Built with Axolotl

See axolotl config

axolotl version: 0.6.0

adapter: lora
base_model: HuggingFaceH4/zephyr-7b-beta
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 59b34b744e943dfd_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/59b34b744e943dfd_train_data.json
  type:
    field_instruction: prompt
    field_output: gold_standard_solution
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: true
hub_model_id: jssky/16bcedb2-98ea-40d9-86d2-09ea159e1069
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/59b34b744e943dfd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 23322a49-31f3-4471-9382-096a344ab5f5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 23322a49-31f3-4471-9382-096a344ab5f5
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

16bcedb2-98ea-40d9-86d2-09ea159e1069

This model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss
0.003 0.2065 375 0.0127
0.0022 0.4131 750 0.0103
0.0001 0.6196 1125 0.0040
0.013 0.8262 1500 0.0033

Framework versions

  • PEFT 0.14.0
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for jssky/16bcedb2-98ea-40d9-86d2-09ea159e1069

Adapter
(448)
this model