adtx-sdxl-01 / README.md
jreinjr's picture
Model card auto-generated by SimpleTuner
5518014 verified
metadata
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
  - sdxl
  - sdxl-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - safe-for-work
  - lora
  - template:sd-lora
  - lycoris
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: >-
      AriApartment, KitchIsland, WhiteFlatwareTray, Refrigerator,
      CoatRackShoeBench, WireShelvingUnitBlack, UtilityCart, ChoppingBoard,
      CabinetDoor, StepLadder, FakeButcherKnife, WoodenBowl,
      WireShelvingUnitBlackSmall, GlassdoorCabinet, WoodenSpoon, CabinetDrawer,
      BlackCeramicMug
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png

adtx-sdxl-01

This is a LyCORIS adapter derived from stabilityai/stable-diffusion-xl-base-1.0.

The main validation prompt used during training was:

AriApartment, KitchIsland, WhiteFlatwareTray, Refrigerator, CoatRackShoeBench, WireShelvingUnitBlack, UtilityCart, ChoppingBoard, CabinetDoor, StepLadder, FakeButcherKnife, WoodenBowl, WireShelvingUnitBlackSmall, GlassdoorCabinet, WoodenSpoon, CabinetDrawer, BlackCeramicMug

Validation settings

  • CFG: 4.2
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
AriApartment, KitchIsland, WhiteFlatwareTray, Refrigerator, CoatRackShoeBench, WireShelvingUnitBlack, UtilityCart, ChoppingBoard, CabinetDoor, StepLadder, FakeButcherKnife, WoodenBowl, WireShelvingUnitBlackSmall, GlassdoorCabinet, WoodenSpoon, CabinetDrawer, BlackCeramicMug
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 10000
  • Learning rate: 0.0001
    • Learning rate schedule: polynomial
    • Warmup steps: 100
  • Max grad norm: 2.0
  • Effective batch size: 8
    • Micro-batch size: 8
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 5.0%

LyCORIS Config:

{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}

Datasets

adtx-00-1024

  • Repeats: 0
  • Total number of images: 102259
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_repo_id = 'jreinjr/adtx-sdxl-01'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.unet)
wrapper.merge_to()

prompt = "AriApartment, KitchIsland, WhiteFlatwareTray, Refrigerator, CoatRackShoeBench, WireShelvingUnitBlack, UtilityCart, ChoppingBoard, CabinetDoor, StepLadder, FakeButcherKnife, WoodenBowl, WireShelvingUnitBlackSmall, GlassdoorCabinet, WoodenSpoon, CabinetDrawer, BlackCeramicMug"
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.unet, weights=qint8)
freeze(pipeline.unet)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")