Update README.md
Browse files
README.md
CHANGED
@@ -37,7 +37,6 @@ model = AutoModelForCausalLM.from_pretrained("jrc/phi3-mini-math", trust_remote_
|
|
37 |
|
38 |
Phi3 was trained using [torchtune]() and the training script + config file are located in this repository.
|
39 |
|
40 |
-
CMD:
|
41 |
```bash
|
42 |
tune run lora_finetune_distributed.py --config mini_lora.yaml
|
43 |
```
|
@@ -56,7 +55,6 @@ tune run lora_finetune_distributed.py --config mini_lora.yaml
|
|
56 |
|
57 |
The finetuned model is evaluated on [minerva-math](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/) using [EleutherAI Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) through torchtune.
|
58 |
|
59 |
-
CMD:
|
60 |
```bash
|
61 |
tune run eleuther_eval --config eleuther_evaluation \
|
62 |
checkpoint.checkpoint_dir=./lora-phi3-math \
|
@@ -64,7 +62,6 @@ tune run eleuther_eval --config eleuther_evaluation \
|
|
64 |
batch_size=32
|
65 |
```
|
66 |
|
67 |
-
RESULTS:
|
68 |
|
69 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
70 |
|------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|
@@ -87,28 +84,6 @@ RESULTS:
|
|
87 |
|
88 |
Max VRAM used per GPU: 29 GB
|
89 |
|
90 |
-
## Citation [optional]
|
91 |
-
|
92 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
93 |
-
|
94 |
-
**BibTeX:**
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
-
|
98 |
-
**APA:**
|
99 |
-
|
100 |
-
[More Information Needed]
|
101 |
-
|
102 |
-
## Glossary [optional]
|
103 |
-
|
104 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
105 |
-
|
106 |
-
[More Information Needed]
|
107 |
-
|
108 |
-
## More Information [optional]
|
109 |
-
|
110 |
-
[More Information Needed]
|
111 |
-
|
112 |
## Model Card Contact
|
113 |
|
114 |
[More Information Needed]
|
|
|
37 |
|
38 |
Phi3 was trained using [torchtune]() and the training script + config file are located in this repository.
|
39 |
|
|
|
40 |
```bash
|
41 |
tune run lora_finetune_distributed.py --config mini_lora.yaml
|
42 |
```
|
|
|
55 |
|
56 |
The finetuned model is evaluated on [minerva-math](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/) using [EleutherAI Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) through torchtune.
|
57 |
|
|
|
58 |
```bash
|
59 |
tune run eleuther_eval --config eleuther_evaluation \
|
60 |
checkpoint.checkpoint_dir=./lora-phi3-math \
|
|
|
62 |
batch_size=32
|
63 |
```
|
64 |
|
|
|
65 |
|
66 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
67 |
|------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|
|
|
84 |
|
85 |
Max VRAM used per GPU: 29 GB
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
## Model Card Contact
|
88 |
|
89 |
[More Information Needed]
|