Update README.md
Browse files
README.md
CHANGED
@@ -25,7 +25,7 @@ Phi-3 Mini 4k Instruct model finetuned on math datasets.
|
|
25 |
|
26 |
Use the code below to get started with the model.
|
27 |
|
28 |
-
```
|
29 |
# Load model directly
|
30 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
31 |
|
@@ -38,7 +38,7 @@ model = AutoModelForCausalLM.from_pretrained("jrc/phi3-mini-math", trust_remote_
|
|
38 |
Phi3 was trained using [torchtune]() and the training script + config file are located in this repository.
|
39 |
|
40 |
CMD:
|
41 |
-
```
|
42 |
tune run lora_finetune_distributed.py --config mini_lora.yaml
|
43 |
```
|
44 |
|
@@ -57,7 +57,7 @@ tune run lora_finetune_distributed.py --config mini_lora.yaml
|
|
57 |
The finetuned model is evaluated on [minerva-math](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/) using [EleutherAI Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) through torchtune.
|
58 |
|
59 |
CMD:
|
60 |
-
```
|
61 |
tune run eleuther_eval --config eleuther_evaluation \
|
62 |
checkpoint.checkpoint_dir=./lora-phi3-math \
|
63 |
tasks=["minerva_math"] \
|
@@ -65,7 +65,7 @@ tune run eleuther_eval --config eleuther_evaluation \
|
|
65 |
```
|
66 |
|
67 |
RESULTS:
|
68 |
-
|
69 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
70 |
|------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|
71 |
|minerva_math |N/A |none | 4|exact_match|0.1670|± |0.0051|
|
@@ -76,7 +76,7 @@ RESULTS:
|
|
76 |
| - minerva_math_num_theory | 1|none | 4|exact_match|0.1148|± |0.0137|
|
77 |
| - minerva_math_prealgebra | 1|none | 4|exact_match|0.3077|± |0.0156|
|
78 |
| - minerva_math_precalc | 1|none | 4|exact_match|0.0623|± |0.0104|
|
79 |
-
|
80 |
|
81 |
|
82 |
## Technical Specifications [optional]
|
|
|
25 |
|
26 |
Use the code below to get started with the model.
|
27 |
|
28 |
+
```python
|
29 |
# Load model directly
|
30 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
31 |
|
|
|
38 |
Phi3 was trained using [torchtune]() and the training script + config file are located in this repository.
|
39 |
|
40 |
CMD:
|
41 |
+
```bash
|
42 |
tune run lora_finetune_distributed.py --config mini_lora.yaml
|
43 |
```
|
44 |
|
|
|
57 |
The finetuned model is evaluated on [minerva-math](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/) using [EleutherAI Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) through torchtune.
|
58 |
|
59 |
CMD:
|
60 |
+
```bash
|
61 |
tune run eleuther_eval --config eleuther_evaluation \
|
62 |
checkpoint.checkpoint_dir=./lora-phi3-math \
|
63 |
tasks=["minerva_math"] \
|
|
|
65 |
```
|
66 |
|
67 |
RESULTS:
|
68 |
+
|
69 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
70 |
|------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|
71 |
|minerva_math |N/A |none | 4|exact_match|0.1670|± |0.0051|
|
|
|
76 |
| - minerva_math_num_theory | 1|none | 4|exact_match|0.1148|± |0.0137|
|
77 |
| - minerva_math_prealgebra | 1|none | 4|exact_match|0.3077|± |0.0156|
|
78 |
| - minerva_math_precalc | 1|none | 4|exact_match|0.0623|± |0.0104|
|
79 |
+
|
80 |
|
81 |
|
82 |
## Technical Specifications [optional]
|