File size: 2,803 Bytes
c0f6947 12db60c 72799dd dc1a633 72799dd 8a7a620 efa6ebf 72799dd dc1a633 efa6ebf 8a7a620 efa6ebf 72799dd dc1a633 72799dd dc1a633 72799dd dc1a633 72799dd aee1f09 72799dd 8a7a620 07e7d0c 72799dd 8a7a620 72799dd 8a7a620 72799dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
datasets:
- TIGER-Lab/MATH-plus
language:
- en
tags:
- torchtune
- minerva-math
library_name: transformers
pipeline_tag: text-generation
---
# jrc/phi3-mini-math
<!-- Provide a quick summary of what the model is/does. -->
Math majors - who needs em? This model can answer any math questions you have.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("jrc/phi3-mini-math", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("jrc/phi3-mini-math", trust_remote_code=True)
```
## Training Details
Phi3 was trained using [torchtune](https://github.com/pytorch/torchtune) and the training script + config file are located in this repository.
```bash
tune run lora_finetune_distributed.py --config mini_lora.yaml
```
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
This model was finetuned on the following datasets:
* TIGER-Lab/MATH-plus: An advanced math-specific dataset with 894k samples.
#### Hardware
4 x NVIDIA A100 GPUs
Max VRAM used per GPU: 29 GB
Real time: 12 hours
## Evaluation
The finetuned model is evaluated on [minerva-math](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/) using [EleutherAI Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) through torchtune.
```bash
tune run eleuther_eval --config eleuther_evaluation \
checkpoint.checkpoint_dir=./lora-phi3-math \
tasks=["minerva_math"] \
batch_size=32
```
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|minerva_math |N/A |none | 4|exact_match|0.1670|± |0.0051|
| - minerva_math_algebra | 1|none | 4|exact_match|0.2502|± |0.0126|
| - minerva_math_counting_and_prob | 1|none | 4|exact_match|0.1329|± |0.0156|
| - minerva_math_geometry | 1|none | 4|exact_match|0.1232|± |0.0150|
| - minerva_math_intermediate_algebra| 1|none | 4|exact_match|0.0576|± |0.0078|
| - minerva_math_num_theory | 1|none | 4|exact_match|0.1148|± |0.0137|
| - minerva_math_prealgebra | 1|none | 4|exact_match|0.3077|± |0.0156|
| - minerva_math_precalc | 1|none | 4|exact_match|0.0623|± |0.0104|
## Model Card Contact
[More Information Needed] |