scibert_all_deep / README.md
jialinselenasong's picture
Training complete
0ca6442 verified
metadata
base_model: allenai/scibert_scivocab_cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: scibert_all_deep
    results: []

scibert_all_deep

This model is a fine-tuned version of allenai/scibert_scivocab_cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8270
  • Precision: 0.6648
  • Recall: 0.7172
  • F1: 0.6900
  • Accuracy: 0.8207

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 363 0.5559 0.6191 0.6867 0.6511 0.8131
0.6741 2.0 726 0.5344 0.6271 0.7101 0.6660 0.8203
0.3917 3.0 1089 0.5548 0.6558 0.7064 0.6801 0.8205
0.3917 4.0 1452 0.5835 0.6717 0.7110 0.6908 0.8246
0.271 5.0 1815 0.6643 0.6524 0.7255 0.6870 0.8196
0.188 6.0 2178 0.7021 0.6724 0.7067 0.6892 0.8222
0.1437 7.0 2541 0.7594 0.6555 0.7180 0.6853 0.8191
0.1437 8.0 2904 0.7916 0.6664 0.7109 0.6879 0.8194
0.114 9.0 3267 0.8123 0.6582 0.7225 0.6888 0.8203
0.0943 10.0 3630 0.8270 0.6648 0.7172 0.6900 0.8207

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1