biobert-all
This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7750
- Precision: 0.5990
- Recall: 0.6572
- F1: 0.6268
- Accuracy: 0.8385
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 363 | 0.4337 | 0.5819 | 0.6535 | 0.6156 | 0.8427 |
0.4325 | 2.0 | 726 | 0.4422 | 0.5912 | 0.6675 | 0.6270 | 0.8438 |
0.2832 | 3.0 | 1089 | 0.4720 | 0.6010 | 0.6422 | 0.6209 | 0.8443 |
0.2832 | 4.0 | 1452 | 0.5342 | 0.6076 | 0.6522 | 0.6291 | 0.8454 |
0.1948 | 5.0 | 1815 | 0.5969 | 0.6059 | 0.6594 | 0.6315 | 0.8415 |
0.1315 | 6.0 | 2178 | 0.6428 | 0.6051 | 0.6551 | 0.6291 | 0.8408 |
0.0987 | 7.0 | 2541 | 0.6933 | 0.5933 | 0.6649 | 0.6270 | 0.8384 |
0.0987 | 8.0 | 2904 | 0.7353 | 0.5949 | 0.6633 | 0.6273 | 0.8390 |
0.0762 | 9.0 | 3267 | 0.7640 | 0.5920 | 0.6623 | 0.6252 | 0.8389 |
0.0628 | 10.0 | 3630 | 0.7750 | 0.5990 | 0.6572 | 0.6268 | 0.8385 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 127
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for jialinselenasong/biobert-all
Base model
dmis-lab/biobert-v1.1