Llama1B_mrpc / README.md
jhj1769's picture
End of training
f8db445 verified
metadata
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: Llama1B_mrpc
    results: []

Llama1B_mrpc

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6757
  • Accuracy: 0.8064
  • F1: 0.8668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.6439 1.0 115 0.4702 0.7819 0.8576
0.72 2.0 230 0.4350 0.8088 0.8617
0.4135 3.0 345 0.7815 0.7721 0.8215
0.1995 4.0 460 1.1299 0.8186 0.8683
0.1434 5.0 575 1.1574 0.8235 0.8754
0.1283 6.0 690 1.4867 0.8162 0.8687
0.0243 7.0 805 1.7604 0.8113 0.8697
0.0108 8.0 920 1.6907 0.8113 0.8715
0.0085 9.0 1035 1.6195 0.8088 0.8678
0.0048 10.0 1150 1.6757 0.8064 0.8668

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0