metadata
base_model: burtenshaw/Qwen3-30B-A3B-python-coder
datasets: burtenshaw/tulu-3-sft-personas-code-no-prompt
library_name: mlx
model_name: Qwen3-30B-A3B-python-coder
tags:
- generated_from_trainer
- trl
- sft
- mlx
licence: license
pipeline_tag: text-generation
jerryzhao173985/Qwen3-30B-A3B-python-coder-mlx
This model jerryzhao173985/Qwen3-30B-A3B-python-coder-mlx was converted to MLX format from burtenshaw/Qwen3-30B-A3B-python-coder using mlx-lm version 0.24.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("jerryzhao173985/Qwen3-30B-A3B-python-coder-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)