|
--- |
|
license: apache-2.0 |
|
base_model: bert-large-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- universal_dependencies |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-large-cased-upos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: universal_dependencies |
|
type: universal_dependencies |
|
config: en_ewt |
|
split: validation |
|
args: en_ewt |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8688031595250056 |
|
- name: Recall |
|
type: recall |
|
value: 0.8557292884764056 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8617720995316154 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8904395106479384 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-large-cased-upos |
|
|
|
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the universal_dependencies dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4114 |
|
- Precision: 0.8688 |
|
- Recall: 0.8557 |
|
- F1: 0.8618 |
|
- Accuracy: 0.8904 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 438 | 0.5774 | 0.8348 | 0.7595 | 0.7893 | 0.8099 | |
|
| No log | 2.0 | 876 | 0.4787 | 0.8114 | 0.7967 | 0.8000 | 0.8385 | |
|
| No log | 3.0 | 1314 | 0.4345 | 0.8227 | 0.8302 | 0.8213 | 0.8601 | |
|
| No log | 4.0 | 1752 | 0.4140 | 0.8257 | 0.8430 | 0.8304 | 0.8727 | |
|
| No log | 5.0 | 2190 | 0.4211 | 0.8405 | 0.8525 | 0.8441 | 0.8787 | |
|
| No log | 6.0 | 2628 | 0.4114 | 0.8688 | 0.8557 | 0.8618 | 0.8904 | |
|
| No log | 7.0 | 3066 | 0.4582 | 0.8454 | 0.8572 | 0.8503 | 0.8911 | |
|
| No log | 8.0 | 3504 | 0.4771 | 0.8447 | 0.8588 | 0.8508 | 0.8894 | |
|
| No log | 9.0 | 3942 | 0.4799 | 0.8545 | 0.8626 | 0.8577 | 0.8918 | |
|
| No log | 10.0 | 4380 | 0.4919 | 0.8539 | 0.8642 | 0.8579 | 0.8937 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|