kw / handler.py
3v324v23's picture
forced lora
b1b9f82
raw
history blame
16.8 kB
import base64
import json
import sys
from collections import defaultdict
from io import BytesIO
from pprint import pprint
from typing import Any, Dict, List
import os
import re
from pathlib import Path
from typing import Union
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from PIL import ImageFilter
import torch
from diffusers import (
DiffusionPipeline,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
utils,
)
from safetensors.torch import load_file
from torch import autocast, tensor
import torchvision.transforms
from PIL import Image
REPO_DIR = Path(__file__).resolve().parent
# if local avoid repo url
# print(os.getcwd())
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type != "cuda":
raise ValueError("need to run on GPU")
class EndpointHandler:
LORA_PATHS = {
"hairdetailer": str(REPO_DIR / "lora/hairdetailer.safetensors"),
"lora_leica": str(REPO_DIR / "lora/lora_leica.safetensors"),
"epiNoiseoffset_v2": str(REPO_DIR / "lora/epiNoiseoffset_v2.safetensors"),
"MBHU-TT2FRS": str(REPO_DIR / "lora/MBHU-TT2FRS.safetensors"),
"ShinyOiledSkin_v20": str(
REPO_DIR / "lora/ShinyOiledSkin_v20-LoRA.safetensors"
),
"polyhedron_new_skin_v1.1": str(
REPO_DIR / "lora/polyhedron_new_skin_v1.1.safetensors"
),
"detailed_eye-10": str(REPO_DIR / "lora/detailed_eye-10.safetensors"),
"add_detail": str(REPO_DIR / "lora/add_detail.safetensors"),
"MuscleGirl_v1": str(REPO_DIR / "lora/MuscleGirl_v1.safetensors"),
"flat2": str(REPO_DIR / "lora/flat2.safetensors"),
}
TEXTUAL_INVERSION = [
{
"weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"),
"token": "easynegative",
},
{
"weight_name": str(REPO_DIR / "embeddings/badhandv4.pt"),
"token": "badhandv4",
},
{
"weight_name": str(REPO_DIR / "embeddings/bad-artist-anime.pt"),
"token": "bad-artist-anime",
},
{
"weight_name": str(REPO_DIR / "embeddings/NegfeetV2.pt"),
"token": "negfeetv2",
},
{
"weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"),
"token": "ng_deepnegative_v1_75t",
},
{
"weight_name": str(REPO_DIR / "embeddings/bad-hands-5.pt"),
"token": "bad-hands-5",
},
]
def __init__(self, path="."):
self.inference_progress = {} # Dictionary to store progress of each request
self.inference_images = {} # Dictionary to store latest image of each request
self.total_steps = {}
self.active_request_ids = list()
self.inference_in_progress = False
self.executor = ThreadPoolExecutor(
max_workers=1
) # Vous pouvez ajuster max_workers en fonction de vos besoins
# load the optimized model
self.pipe = DiffusionPipeline.from_pretrained(
path,
custom_pipeline="lpw_stable_diffusion", # avoid 77 token limit
torch_dtype=torch.float16, # accelerate render
)
self.pipe = self.pipe.to(device)
# https://stablediffusionapi.com/docs/a1111schedulers/
# DPM++ 2M SDE Karras
# increase step to avoid high contrast num_inference_steps=30
# self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
# self.pipe.scheduler.config,
# use_karras_sigmas=True,
# algorithm_type="sde-dpmsolver++",
# )
# DPM++ 2M Karras
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True,
)
# Mode boulardus
self.pipe.safety_checker = None
# Disable progress bar
self.pipe.set_progress_bar_config(disable=True)
# Load negative embeddings to avoid bad hands, etc
self.load_embeddings()
# boosts performance by another 20%
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.enable_attention_slicing()
# may need a requirement in the root with xformer
# Load loras one time only
# Must be replaced once we will know how to hot load/unload
# it use the own made load_lora function
self.load_selected_loras(
[
["polyhedron_new_skin_v1.1", 0.2],
["detailed_eye-10", 0.2],
["add_detail", 0.3],
["MuscleGirl_v1", 0.2],
]
)
def load_lora(self, pipeline, lora_path, lora_weight=0.5):
state_dict = load_file(lora_path)
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
alpha = lora_weight
visited = []
for key in state_dict:
state_dict[key] = state_dict[key].to(device)
# directly update weight in diffusers model
for key in state_dict:
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
layer_infos = (
key.split(".")[0]
.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1]
.split("_")
)
curr_layer = pipeline.text_encoder
else:
layer_infos = (
key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
)
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# org_forward(x) + lora_up(lora_down(x)) * multiplier
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = (
state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
)
weight_down = (
state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
)
curr_layer.weight.data += alpha * torch.mm(
weight_up, weight_down
).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return pipeline
def load_embeddings(self):
"""Load textual inversions, avoid bad prompts"""
for model in EndpointHandler.TEXTUAL_INVERSION:
self.pipe.load_textual_inversion(
".", weight_name=model["weight_name"], token=model["token"]
)
def load_selected_loras(self, selections):
"""Load Loras models, can lead to marvelous creations"""
for model_name, weight in selections:
lora_path = EndpointHandler.LORA_PATHS[model_name]
# self.pipe.load_lora_weights(lora_path)
self.load_lora(self.pipe, lora_path, weight)
def clean_negative_prompt(self, negative_prompt):
"""Clean negative prompt to remove already used negative prompt handlers"""
# negative_prompt = (
# negative_prompt
# + """, easynegative, badhandv4, bad-artist-anime, negfeetv2, ng_deepnegative_v1_75t, bad-hands-5, """
# )
tokens = [item["token"] for item in self.TEXTUAL_INVERSION]
# Retirer tous les tokens de negative_prompt s'ils existent déjà
for token in tokens:
# Utiliser une expression régulière pour un remplacement insensible à la casse
negative_prompt = re.sub(
r"\b" + re.escape(token) + r"\b",
"",
negative_prompt,
flags=re.IGNORECASE,
).strip()
# Ajouter tous les tokens à la fin de negative_prompt
negative_prompt += " " + " ".join(tokens)
return negative_prompt
def clean_request_data(self):
"""Clean up the data related to a specific request ID."""
# Remove the request ID from the progress dictionary
self.inference_progress.clear()
# Remove the request ID from the images dictionary
self.inference_images.clear()
# Remove the request ID from the total_steps dictionary
self.total_steps.clear()
# Delete request id
self.active_request_ids.clear()
# Set inference to False
self.inference_in_progress = False
def progress_callback(
self,
step: int,
timestep: int,
latents: Any,
request_id: str,
status: str,
):
try:
if status == "progress":
# Latents to numpy
img_data = self.pipe.decode_latents(latents)
img_data = (img_data.squeeze() * 255).astype(np.uint8)
img = Image.fromarray(img_data, "RGB")
# Apply a blur to the image
# more intense at the beginning
if step < int(self.total_steps[self.active_request_ids[0]] / 1.5):
img = img.filter(ImageFilter.GaussianBlur(radius=30))
else:
img = img.filter(ImageFilter.GaussianBlur(radius=10))
# print(img_data)
else:
# pil object
# print(latents)
img = latents
buffered = BytesIO()
img.save(buffered, format="PNG")
# print(status)
# Save the image to a file
# img.save("squirel.png", format="PNG")
# Encode the image into a base64 string representation
img_str = base64.b64encode(buffered.getvalue()).decode()
except Exception as e:
print(f"Error: {e}")
# Store progress and image
progress_percentage = (
step / self.total_steps[request_id]
) * 100 # Assuming self.total_steps is the total number of steps for inference
self.inference_progress[request_id] = progress_percentage
self.inference_images[request_id] = img_str
def check_progress(self, request_id: str) -> Dict[str, Union[str, float]]:
progress = self.inference_progress.get(request_id, 0)
latest_image = self.inference_images.get(request_id, None)
# print(self.inference_progress)
if progress >= 100:
status = "complete"
else:
status = "in-progress"
return {
"flag": "success",
"status": status,
"progress": int(progress),
"image": latest_image,
}
def start_inference(self, data: Dict) -> Dict:
"""Start a new inference."""
global device
# Which Lora do we load ?
# selected_models = [
# ("ShinyOiledSkin_v20", 0.3),
# ("MBHU-TT2FRS", 0.5),
# ("hairdetailer", 0.5),
# ("lora_leica", 0.5),
# ("epiNoiseoffset_v2", 0.5),
# ]
# 1. Verify input arguments
required_fields = [
"prompt",
"negative_prompt",
"width",
"num_inference_steps",
"height",
"guidance_scale",
"request_id",
]
missing_fields = [field for field in required_fields if field not in data]
if missing_fields:
return {
"flag": "error",
"message": f"Missing fields: {', '.join(missing_fields)}",
}
# Now extract the fields
prompt = data["prompt"]
negative_prompt = data["negative_prompt"]
loras_model = data.get("loras_model", None)
seed = data.get("seed", None)
width = data["width"]
num_inference_steps = data["num_inference_steps"]
height = data["height"]
guidance_scale = data["guidance_scale"]
request_id = data["request_id"]
# Used for progress checker
self.total_steps[request_id] = num_inference_steps
# USe this to add automatically some negative prompts
forced_negative = self.clean_negative_prompt(negative_prompt)
# Set the generator seed if provided
generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None
# Load the provided Lora models
# self.pipe.unload_lora_weights() # Unload models to avoid lora staking
# if loras_model:
# self.load_selected_loras(loras_model)
# set scale of loras, for now take only first scale of the loaded lora and apply to all until we find the way to apply specified scale
# scale = {"scale": loras_model[0][1]} if loras_model else None
try:
# 2. Process
with autocast(device.type):
image = self.pipe.text2img(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=height,
width=width,
negative_prompt=forced_negative,
generator=generator,
max_embeddings_multiples=5,
callback=lambda step, timestep, latents: self.progress_callback(
step, timestep, latents, request_id, "progress"
),
callback_steps=5,
# cross_attention_kwargs={"scale": 0.2},
).images[0]
# print(image)
self.progress_callback(
num_inference_steps, 0, image, request_id, "complete"
)
self.inference_in_progress = False
# for debug
# image.save("squirelb.png", format="PNG")
except Exception as e:
# Handle any other exceptions and return an error response
return {"flag": "error", "message": str(e)}
def __call__(self, data: Any) -> Dict:
"""Handle incoming requests."""
action = data.get("action", None)
request_id = data.get("request_id")
# Check if the request_id is valid for all actions
if not request_id:
return {"flag": "error", "message": "Missing request_id."}
if action == "check_progress":
if request_id not in self.active_request_ids:
return {
"flag": "error",
"message": "Request id doesn't match any active request.",
}
return self.check_progress(request_id)
elif action == "inference":
# Check if an inference is already in progress
if self.inference_in_progress:
return {
"flag": "error",
"message": "Another inference is already in progress. Please wait.",
}
# Set the inference state to in progress
self.clean_request_data()
self.inference_in_progress = True
self.inference_progress[request_id] = 0
self.inference_images[request_id] = None
self.active_request_ids.append(request_id)
self.executor.submit(self.start_inference, data)
return {
"flag": "success",
"message": "Inference started",
"request_id": request_id,
}
else:
return {"flag": "error", "message": f"Unsupported action: {action}"}