File size: 16,754 Bytes
f5210ab 10d457b b3e9026 e99a88a 92627a4 e9183d7 f5210ab 92627a4 f5210ab 92627a4 f5210ab e99a88a f5210ab 25785e2 1a3587f 25785e2 f5210ab e99a88a 92627a4 f5210ab e99a88a bf7f6a8 25785e2 e99a88a f5210ab e99a88a 92627a4 e99a88a f5210ab 25785e2 e99a88a 25785e2 f5210ab 92627a4 b1b9f82 92627a4 517c7bb 92627a4 f5210ab 92627a4 f5210ab c1f292a 1a3587f c1f292a 1a3587f f5210ab 92627a4 f5210ab 8ad15f2 f5210ab b3e9026 f5210ab b3e9026 f5210ab b1b9f82 92627a4 b1b9f82 92627a4 b1b9f82 92627a4 b1b9f82 92627a4 b3e9026 b1b9f82 b3e9026 92627a4 e9183d7 b1b9f82 e9183d7 92627a4 7c057be 92627a4 f5210ab 92627a4 f5210ab 92627a4 f5210ab 92627a4 f5210ab b3e9026 f5210ab b3e9026 b816b7d b3e9026 f5210ab 92627a4 b3e9026 f5210ab 92627a4 f5210ab 2c58008 92627a4 f5210ab 517c7bb 2c58008 b3e9026 2c58008 b1b9f82 2c58008 b1b9f82 2c58008 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import base64
import json
import sys
from collections import defaultdict
from io import BytesIO
from pprint import pprint
from typing import Any, Dict, List
import os
import re
from pathlib import Path
from typing import Union
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from PIL import ImageFilter
import torch
from diffusers import (
DiffusionPipeline,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
utils,
)
from safetensors.torch import load_file
from torch import autocast, tensor
import torchvision.transforms
from PIL import Image
REPO_DIR = Path(__file__).resolve().parent
# if local avoid repo url
# print(os.getcwd())
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type != "cuda":
raise ValueError("need to run on GPU")
class EndpointHandler:
LORA_PATHS = {
"hairdetailer": str(REPO_DIR / "lora/hairdetailer.safetensors"),
"lora_leica": str(REPO_DIR / "lora/lora_leica.safetensors"),
"epiNoiseoffset_v2": str(REPO_DIR / "lora/epiNoiseoffset_v2.safetensors"),
"MBHU-TT2FRS": str(REPO_DIR / "lora/MBHU-TT2FRS.safetensors"),
"ShinyOiledSkin_v20": str(
REPO_DIR / "lora/ShinyOiledSkin_v20-LoRA.safetensors"
),
"polyhedron_new_skin_v1.1": str(
REPO_DIR / "lora/polyhedron_new_skin_v1.1.safetensors"
),
"detailed_eye-10": str(REPO_DIR / "lora/detailed_eye-10.safetensors"),
"add_detail": str(REPO_DIR / "lora/add_detail.safetensors"),
"MuscleGirl_v1": str(REPO_DIR / "lora/MuscleGirl_v1.safetensors"),
"flat2": str(REPO_DIR / "lora/flat2.safetensors"),
}
TEXTUAL_INVERSION = [
{
"weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"),
"token": "easynegative",
},
{
"weight_name": str(REPO_DIR / "embeddings/badhandv4.pt"),
"token": "badhandv4",
},
{
"weight_name": str(REPO_DIR / "embeddings/bad-artist-anime.pt"),
"token": "bad-artist-anime",
},
{
"weight_name": str(REPO_DIR / "embeddings/NegfeetV2.pt"),
"token": "negfeetv2",
},
{
"weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"),
"token": "ng_deepnegative_v1_75t",
},
{
"weight_name": str(REPO_DIR / "embeddings/bad-hands-5.pt"),
"token": "bad-hands-5",
},
]
def __init__(self, path="."):
self.inference_progress = {} # Dictionary to store progress of each request
self.inference_images = {} # Dictionary to store latest image of each request
self.total_steps = {}
self.active_request_ids = list()
self.inference_in_progress = False
self.executor = ThreadPoolExecutor(
max_workers=1
) # Vous pouvez ajuster max_workers en fonction de vos besoins
# load the optimized model
self.pipe = DiffusionPipeline.from_pretrained(
path,
custom_pipeline="lpw_stable_diffusion", # avoid 77 token limit
torch_dtype=torch.float16, # accelerate render
)
self.pipe = self.pipe.to(device)
# https://stablediffusionapi.com/docs/a1111schedulers/
# DPM++ 2M SDE Karras
# increase step to avoid high contrast num_inference_steps=30
# self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
# self.pipe.scheduler.config,
# use_karras_sigmas=True,
# algorithm_type="sde-dpmsolver++",
# )
# DPM++ 2M Karras
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True,
)
# Mode boulardus
self.pipe.safety_checker = None
# Disable progress bar
self.pipe.set_progress_bar_config(disable=True)
# Load negative embeddings to avoid bad hands, etc
self.load_embeddings()
# boosts performance by another 20%
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.enable_attention_slicing()
# may need a requirement in the root with xformer
# Load loras one time only
# Must be replaced once we will know how to hot load/unload
# it use the own made load_lora function
self.load_selected_loras(
[
["polyhedron_new_skin_v1.1", 0.2],
["detailed_eye-10", 0.2],
["add_detail", 0.3],
["MuscleGirl_v1", 0.2],
]
)
def load_lora(self, pipeline, lora_path, lora_weight=0.5):
state_dict = load_file(lora_path)
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
alpha = lora_weight
visited = []
for key in state_dict:
state_dict[key] = state_dict[key].to(device)
# directly update weight in diffusers model
for key in state_dict:
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
layer_infos = (
key.split(".")[0]
.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1]
.split("_")
)
curr_layer = pipeline.text_encoder
else:
layer_infos = (
key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
)
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# org_forward(x) + lora_up(lora_down(x)) * multiplier
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = (
state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
)
weight_down = (
state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
)
curr_layer.weight.data += alpha * torch.mm(
weight_up, weight_down
).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return pipeline
def load_embeddings(self):
"""Load textual inversions, avoid bad prompts"""
for model in EndpointHandler.TEXTUAL_INVERSION:
self.pipe.load_textual_inversion(
".", weight_name=model["weight_name"], token=model["token"]
)
def load_selected_loras(self, selections):
"""Load Loras models, can lead to marvelous creations"""
for model_name, weight in selections:
lora_path = EndpointHandler.LORA_PATHS[model_name]
# self.pipe.load_lora_weights(lora_path)
self.load_lora(self.pipe, lora_path, weight)
def clean_negative_prompt(self, negative_prompt):
"""Clean negative prompt to remove already used negative prompt handlers"""
# negative_prompt = (
# negative_prompt
# + """, easynegative, badhandv4, bad-artist-anime, negfeetv2, ng_deepnegative_v1_75t, bad-hands-5, """
# )
tokens = [item["token"] for item in self.TEXTUAL_INVERSION]
# Retirer tous les tokens de negative_prompt s'ils existent déjà
for token in tokens:
# Utiliser une expression régulière pour un remplacement insensible à la casse
negative_prompt = re.sub(
r"\b" + re.escape(token) + r"\b",
"",
negative_prompt,
flags=re.IGNORECASE,
).strip()
# Ajouter tous les tokens à la fin de negative_prompt
negative_prompt += " " + " ".join(tokens)
return negative_prompt
def clean_request_data(self):
"""Clean up the data related to a specific request ID."""
# Remove the request ID from the progress dictionary
self.inference_progress.clear()
# Remove the request ID from the images dictionary
self.inference_images.clear()
# Remove the request ID from the total_steps dictionary
self.total_steps.clear()
# Delete request id
self.active_request_ids.clear()
# Set inference to False
self.inference_in_progress = False
def progress_callback(
self,
step: int,
timestep: int,
latents: Any,
request_id: str,
status: str,
):
try:
if status == "progress":
# Latents to numpy
img_data = self.pipe.decode_latents(latents)
img_data = (img_data.squeeze() * 255).astype(np.uint8)
img = Image.fromarray(img_data, "RGB")
# Apply a blur to the image
# more intense at the beginning
if step < int(self.total_steps[self.active_request_ids[0]] / 1.5):
img = img.filter(ImageFilter.GaussianBlur(radius=30))
else:
img = img.filter(ImageFilter.GaussianBlur(radius=10))
# print(img_data)
else:
# pil object
# print(latents)
img = latents
buffered = BytesIO()
img.save(buffered, format="PNG")
# print(status)
# Save the image to a file
# img.save("squirel.png", format="PNG")
# Encode the image into a base64 string representation
img_str = base64.b64encode(buffered.getvalue()).decode()
except Exception as e:
print(f"Error: {e}")
# Store progress and image
progress_percentage = (
step / self.total_steps[request_id]
) * 100 # Assuming self.total_steps is the total number of steps for inference
self.inference_progress[request_id] = progress_percentage
self.inference_images[request_id] = img_str
def check_progress(self, request_id: str) -> Dict[str, Union[str, float]]:
progress = self.inference_progress.get(request_id, 0)
latest_image = self.inference_images.get(request_id, None)
# print(self.inference_progress)
if progress >= 100:
status = "complete"
else:
status = "in-progress"
return {
"flag": "success",
"status": status,
"progress": int(progress),
"image": latest_image,
}
def start_inference(self, data: Dict) -> Dict:
"""Start a new inference."""
global device
# Which Lora do we load ?
# selected_models = [
# ("ShinyOiledSkin_v20", 0.3),
# ("MBHU-TT2FRS", 0.5),
# ("hairdetailer", 0.5),
# ("lora_leica", 0.5),
# ("epiNoiseoffset_v2", 0.5),
# ]
# 1. Verify input arguments
required_fields = [
"prompt",
"negative_prompt",
"width",
"num_inference_steps",
"height",
"guidance_scale",
"request_id",
]
missing_fields = [field for field in required_fields if field not in data]
if missing_fields:
return {
"flag": "error",
"message": f"Missing fields: {', '.join(missing_fields)}",
}
# Now extract the fields
prompt = data["prompt"]
negative_prompt = data["negative_prompt"]
loras_model = data.get("loras_model", None)
seed = data.get("seed", None)
width = data["width"]
num_inference_steps = data["num_inference_steps"]
height = data["height"]
guidance_scale = data["guidance_scale"]
request_id = data["request_id"]
# Used for progress checker
self.total_steps[request_id] = num_inference_steps
# USe this to add automatically some negative prompts
forced_negative = self.clean_negative_prompt(negative_prompt)
# Set the generator seed if provided
generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None
# Load the provided Lora models
# self.pipe.unload_lora_weights() # Unload models to avoid lora staking
# if loras_model:
# self.load_selected_loras(loras_model)
# set scale of loras, for now take only first scale of the loaded lora and apply to all until we find the way to apply specified scale
# scale = {"scale": loras_model[0][1]} if loras_model else None
try:
# 2. Process
with autocast(device.type):
image = self.pipe.text2img(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=height,
width=width,
negative_prompt=forced_negative,
generator=generator,
max_embeddings_multiples=5,
callback=lambda step, timestep, latents: self.progress_callback(
step, timestep, latents, request_id, "progress"
),
callback_steps=5,
# cross_attention_kwargs={"scale": 0.2},
).images[0]
# print(image)
self.progress_callback(
num_inference_steps, 0, image, request_id, "complete"
)
self.inference_in_progress = False
# for debug
# image.save("squirelb.png", format="PNG")
except Exception as e:
# Handle any other exceptions and return an error response
return {"flag": "error", "message": str(e)}
def __call__(self, data: Any) -> Dict:
"""Handle incoming requests."""
action = data.get("action", None)
request_id = data.get("request_id")
# Check if the request_id is valid for all actions
if not request_id:
return {"flag": "error", "message": "Missing request_id."}
if action == "check_progress":
if request_id not in self.active_request_ids:
return {
"flag": "error",
"message": "Request id doesn't match any active request.",
}
return self.check_progress(request_id)
elif action == "inference":
# Check if an inference is already in progress
if self.inference_in_progress:
return {
"flag": "error",
"message": "Another inference is already in progress. Please wait.",
}
# Set the inference state to in progress
self.clean_request_data()
self.inference_in_progress = True
self.inference_progress[request_id] = 0
self.inference_images[request_id] = None
self.active_request_ids.append(request_id)
self.executor.submit(self.start_inference, data)
return {
"flag": "success",
"message": "Inference started",
"request_id": request_id,
}
else:
return {"flag": "error", "message": f"Unsupported action: {action}"}
|