segformer-b3-finetuned-segments-chargers-full-v3.1
This model is a fine-tuned version of nvidia/mit-b3 on the dskong07/chargers-full-v0.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2675
- Mean Iou: 0.8041
- Mean Accuracy: 0.8712
- Overall Accuracy: 0.9350
- Accuracy Unlabeled: nan
- Accuracy Screen: 0.7694
- Accuracy Body: 0.9436
- Accuracy Cable: 0.7715
- Accuracy Plug: 0.9003
- Accuracy Void-background: 0.9712
- Iou Unlabeled: nan
- Iou Screen: 0.7186
- Iou Body: 0.8450
- Iou Cable: 0.6753
- Iou Plug: 0.8376
- Iou Void-background: 0.9441
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Screen | Accuracy Body | Accuracy Cable | Accuracy Plug | Accuracy Void-background | Iou Unlabeled | Iou Screen | Iou Body | Iou Cable | Iou Plug | Iou Void-background |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6506 | 2.2222 | 20 | 0.7818 | 0.5445 | 0.7593 | 0.8622 | nan | 0.6665 | 0.8659 | 0.5486 | 0.7951 | 0.9207 | 0.0 | 0.5753 | 0.7078 | 0.4054 | 0.7217 | 0.8569 |
0.435 | 4.4444 | 40 | 0.3972 | 0.7011 | 0.8078 | 0.8813 | nan | 0.8288 | 0.8134 | 0.6558 | 0.7876 | 0.9533 | nan | 0.6435 | 0.7211 | 0.5041 | 0.7552 | 0.8816 |
0.2948 | 6.6667 | 60 | 0.3063 | 0.7467 | 0.8376 | 0.9081 | nan | 0.7377 | 0.9184 | 0.7381 | 0.8463 | 0.9473 | nan | 0.6625 | 0.7904 | 0.5802 | 0.7875 | 0.9128 |
0.2005 | 8.8889 | 80 | 0.2800 | 0.7509 | 0.8233 | 0.9138 | nan | 0.6521 | 0.9449 | 0.7019 | 0.8601 | 0.9577 | nan | 0.6157 | 0.8022 | 0.6035 | 0.8092 | 0.9242 |
0.1762 | 11.1111 | 100 | 0.2633 | 0.7786 | 0.8579 | 0.9213 | nan | 0.7547 | 0.9300 | 0.7894 | 0.8576 | 0.9580 | nan | 0.6881 | 0.8148 | 0.6427 | 0.8201 | 0.9273 |
0.142 | 13.3333 | 120 | 0.2757 | 0.7790 | 0.8613 | 0.9217 | nan | 0.7705 | 0.9252 | 0.7758 | 0.8768 | 0.9582 | nan | 0.6801 | 0.8141 | 0.6413 | 0.8293 | 0.9303 |
0.1121 | 15.5556 | 140 | 0.2491 | 0.7916 | 0.8642 | 0.9293 | nan | 0.7772 | 0.9313 | 0.7556 | 0.8884 | 0.9686 | nan | 0.7121 | 0.8321 | 0.6505 | 0.8259 | 0.9373 |
0.1022 | 17.7778 | 160 | 0.2332 | 0.8041 | 0.8851 | 0.9326 | nan | 0.8106 | 0.9250 | 0.8261 | 0.8972 | 0.9667 | nan | 0.7340 | 0.8398 | 0.6668 | 0.8412 | 0.9387 |
0.1639 | 20.0 | 180 | 0.2549 | 0.7924 | 0.8591 | 0.9300 | nan | 0.7472 | 0.9360 | 0.7741 | 0.8655 | 0.9725 | nan | 0.7031 | 0.8342 | 0.6621 | 0.8247 | 0.9381 |
0.0953 | 22.2222 | 200 | 0.2447 | 0.8045 | 0.8806 | 0.9322 | nan | 0.7936 | 0.9322 | 0.8178 | 0.8939 | 0.9657 | nan | 0.7319 | 0.8379 | 0.6717 | 0.8433 | 0.9377 |
0.0899 | 24.4444 | 220 | 0.2581 | 0.7979 | 0.8640 | 0.9312 | nan | 0.7647 | 0.9434 | 0.7541 | 0.8905 | 0.9673 | nan | 0.7154 | 0.8346 | 0.6602 | 0.8404 | 0.9391 |
0.0826 | 26.6667 | 240 | 0.2403 | 0.8035 | 0.8692 | 0.9337 | nan | 0.7697 | 0.9426 | 0.7628 | 0.9010 | 0.9698 | nan | 0.7233 | 0.8424 | 0.6667 | 0.8451 | 0.9400 |
0.0765 | 28.8889 | 260 | 0.2622 | 0.8026 | 0.8739 | 0.9326 | nan | 0.7736 | 0.9396 | 0.7905 | 0.8987 | 0.9670 | nan | 0.7167 | 0.8392 | 0.6738 | 0.8432 | 0.9399 |
0.0812 | 31.1111 | 280 | 0.2668 | 0.8021 | 0.8738 | 0.9309 | nan | 0.7726 | 0.9236 | 0.8063 | 0.8948 | 0.9718 | nan | 0.7178 | 0.8341 | 0.6815 | 0.8415 | 0.9356 |
0.0804 | 33.3333 | 300 | 0.2394 | 0.8086 | 0.8767 | 0.9356 | nan | 0.7782 | 0.9371 | 0.8015 | 0.8937 | 0.9728 | nan | 0.7276 | 0.8458 | 0.6820 | 0.8444 | 0.9429 |
0.0682 | 35.5556 | 320 | 0.2538 | 0.8046 | 0.8799 | 0.9336 | nan | 0.8020 | 0.9316 | 0.8112 | 0.8861 | 0.9687 | nan | 0.7319 | 0.8416 | 0.6723 | 0.8363 | 0.9410 |
0.0768 | 37.7778 | 340 | 0.2576 | 0.8043 | 0.8712 | 0.9341 | nan | 0.7849 | 0.9357 | 0.7655 | 0.8973 | 0.9724 | nan | 0.7240 | 0.8417 | 0.6719 | 0.8421 | 0.9419 |
0.0789 | 40.0 | 360 | 0.2594 | 0.8040 | 0.8722 | 0.9346 | nan | 0.7789 | 0.9378 | 0.7740 | 0.8979 | 0.9723 | nan | 0.7208 | 0.8437 | 0.6760 | 0.8364 | 0.9432 |
0.0621 | 42.2222 | 380 | 0.2658 | 0.8036 | 0.8706 | 0.9343 | nan | 0.7709 | 0.9398 | 0.7780 | 0.8923 | 0.9721 | nan | 0.7170 | 0.8427 | 0.6752 | 0.8401 | 0.9432 |
0.063 | 44.4444 | 400 | 0.2609 | 0.8033 | 0.8686 | 0.9343 | nan | 0.7643 | 0.9386 | 0.7796 | 0.8864 | 0.9742 | nan | 0.7151 | 0.8433 | 0.6755 | 0.8397 | 0.9429 |
0.0625 | 46.6667 | 420 | 0.2655 | 0.8040 | 0.8725 | 0.9350 | nan | 0.7754 | 0.9391 | 0.7698 | 0.9057 | 0.9724 | nan | 0.7205 | 0.8455 | 0.6754 | 0.8352 | 0.9435 |
0.0808 | 48.8889 | 440 | 0.2675 | 0.8041 | 0.8712 | 0.9350 | nan | 0.7694 | 0.9436 | 0.7715 | 0.9003 | 0.9712 | nan | 0.7186 | 0.8450 | 0.6753 | 0.8376 | 0.9441 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 326
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for irvingz/segformer-b3-finetuned-segments-chargers-full-v3.1
Base model
nvidia/mit-b3