segformer-b3-finetuned-segments-chargers-full-v3.1

This model is a fine-tuned version of nvidia/mit-b3 on the dskong07/chargers-full-v0.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2675
  • Mean Iou: 0.8041
  • Mean Accuracy: 0.8712
  • Overall Accuracy: 0.9350
  • Accuracy Unlabeled: nan
  • Accuracy Screen: 0.7694
  • Accuracy Body: 0.9436
  • Accuracy Cable: 0.7715
  • Accuracy Plug: 0.9003
  • Accuracy Void-background: 0.9712
  • Iou Unlabeled: nan
  • Iou Screen: 0.7186
  • Iou Body: 0.8450
  • Iou Cable: 0.6753
  • Iou Plug: 0.8376
  • Iou Void-background: 0.9441

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Screen Accuracy Body Accuracy Cable Accuracy Plug Accuracy Void-background Iou Unlabeled Iou Screen Iou Body Iou Cable Iou Plug Iou Void-background
0.6506 2.2222 20 0.7818 0.5445 0.7593 0.8622 nan 0.6665 0.8659 0.5486 0.7951 0.9207 0.0 0.5753 0.7078 0.4054 0.7217 0.8569
0.435 4.4444 40 0.3972 0.7011 0.8078 0.8813 nan 0.8288 0.8134 0.6558 0.7876 0.9533 nan 0.6435 0.7211 0.5041 0.7552 0.8816
0.2948 6.6667 60 0.3063 0.7467 0.8376 0.9081 nan 0.7377 0.9184 0.7381 0.8463 0.9473 nan 0.6625 0.7904 0.5802 0.7875 0.9128
0.2005 8.8889 80 0.2800 0.7509 0.8233 0.9138 nan 0.6521 0.9449 0.7019 0.8601 0.9577 nan 0.6157 0.8022 0.6035 0.8092 0.9242
0.1762 11.1111 100 0.2633 0.7786 0.8579 0.9213 nan 0.7547 0.9300 0.7894 0.8576 0.9580 nan 0.6881 0.8148 0.6427 0.8201 0.9273
0.142 13.3333 120 0.2757 0.7790 0.8613 0.9217 nan 0.7705 0.9252 0.7758 0.8768 0.9582 nan 0.6801 0.8141 0.6413 0.8293 0.9303
0.1121 15.5556 140 0.2491 0.7916 0.8642 0.9293 nan 0.7772 0.9313 0.7556 0.8884 0.9686 nan 0.7121 0.8321 0.6505 0.8259 0.9373
0.1022 17.7778 160 0.2332 0.8041 0.8851 0.9326 nan 0.8106 0.9250 0.8261 0.8972 0.9667 nan 0.7340 0.8398 0.6668 0.8412 0.9387
0.1639 20.0 180 0.2549 0.7924 0.8591 0.9300 nan 0.7472 0.9360 0.7741 0.8655 0.9725 nan 0.7031 0.8342 0.6621 0.8247 0.9381
0.0953 22.2222 200 0.2447 0.8045 0.8806 0.9322 nan 0.7936 0.9322 0.8178 0.8939 0.9657 nan 0.7319 0.8379 0.6717 0.8433 0.9377
0.0899 24.4444 220 0.2581 0.7979 0.8640 0.9312 nan 0.7647 0.9434 0.7541 0.8905 0.9673 nan 0.7154 0.8346 0.6602 0.8404 0.9391
0.0826 26.6667 240 0.2403 0.8035 0.8692 0.9337 nan 0.7697 0.9426 0.7628 0.9010 0.9698 nan 0.7233 0.8424 0.6667 0.8451 0.9400
0.0765 28.8889 260 0.2622 0.8026 0.8739 0.9326 nan 0.7736 0.9396 0.7905 0.8987 0.9670 nan 0.7167 0.8392 0.6738 0.8432 0.9399
0.0812 31.1111 280 0.2668 0.8021 0.8738 0.9309 nan 0.7726 0.9236 0.8063 0.8948 0.9718 nan 0.7178 0.8341 0.6815 0.8415 0.9356
0.0804 33.3333 300 0.2394 0.8086 0.8767 0.9356 nan 0.7782 0.9371 0.8015 0.8937 0.9728 nan 0.7276 0.8458 0.6820 0.8444 0.9429
0.0682 35.5556 320 0.2538 0.8046 0.8799 0.9336 nan 0.8020 0.9316 0.8112 0.8861 0.9687 nan 0.7319 0.8416 0.6723 0.8363 0.9410
0.0768 37.7778 340 0.2576 0.8043 0.8712 0.9341 nan 0.7849 0.9357 0.7655 0.8973 0.9724 nan 0.7240 0.8417 0.6719 0.8421 0.9419
0.0789 40.0 360 0.2594 0.8040 0.8722 0.9346 nan 0.7789 0.9378 0.7740 0.8979 0.9723 nan 0.7208 0.8437 0.6760 0.8364 0.9432
0.0621 42.2222 380 0.2658 0.8036 0.8706 0.9343 nan 0.7709 0.9398 0.7780 0.8923 0.9721 nan 0.7170 0.8427 0.6752 0.8401 0.9432
0.063 44.4444 400 0.2609 0.8033 0.8686 0.9343 nan 0.7643 0.9386 0.7796 0.8864 0.9742 nan 0.7151 0.8433 0.6755 0.8397 0.9429
0.0625 46.6667 420 0.2655 0.8040 0.8725 0.9350 nan 0.7754 0.9391 0.7698 0.9057 0.9724 nan 0.7205 0.8455 0.6754 0.8352 0.9435
0.0808 48.8889 440 0.2675 0.8041 0.8712 0.9350 nan 0.7694 0.9436 0.7715 0.9003 0.9712 nan 0.7186 0.8450 0.6753 0.8376 0.9441

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
326
Safetensors
Model size
47.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for irvingz/segformer-b3-finetuned-segments-chargers-full-v3.1

Base model

nvidia/mit-b3
Finetuned
(13)
this model