File size: 3,983 Bytes
7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 7f44eb9 d4b7753 519b6b5 d4b7753 7f44eb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from io import BytesIO
from typing import Any, Dict, Optional, List
import torch
from PIL import Image
from transformers import AutoProcessor, MllamaForConditionalGeneration
from sentence_transformers.models import Transformer as BaseTransformer
class MultiModalTransformer(BaseTransformer):
def __init__(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
tokenizer_args: Optional[Dict[str, Any]] = None,
**kwargs,
):
super().__init__(model_name_or_path, **kwargs)
if tokenizer_args is None:
tokenizer_args = {}
# Initialize processor
self.processor = AutoProcessor.from_pretrained(
model_name_or_path, cache_dir=cache_dir, **tokenizer_args
)
def _load_model(
self,
model_name_or_path: str,
config,
cache_dir: str,
backend: str,
is_peft_model: bool,
**model_args,
) -> None:
self.auto_model = MllamaForConditionalGeneration.from_pretrained(
model_name_or_path, torch_dtype=torch.bfloat16, cache_dir=cache_dir, **model_args
)
def forward(
self, features: Dict[str, torch.Tensor], **kwargs
) -> Dict[str, torch.Tensor]:
# Process inputs through the model
outputs = self.auto_model(
**features,
return_dict=True,
output_hidden_states=True,
**kwargs
)
# Apply last pooling and normalization
last_hidden_state = outputs.hidden_states[-1]
attention_mask = features["attention_mask"]
sentence_embedding = self._last_pooling(last_hidden_state, attention_mask)
features.update({"sentence_embedding": sentence_embedding})
return features
def _last_pooling(self, last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
"""Apply last token pooling and L2 normalization"""
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_state.shape[0]
reps = last_hidden_state[torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths]
return torch.nn.functional.normalize(reps, p=2, dim=-1)
def tokenize(self, texts: List[List[Dict]] | List[str]) -> Dict[str, torch.Tensor]:
def process_text_item(item):
if isinstance(item, str):
return item, []
text, images = "", []
for sub_item in item:
if sub_item["type"] == "text":
text += sub_item["content"]
elif sub_item["type"] in ["image_bytes", "image_path"]:
text += "<|image|>"
if sub_item["type"] == "image_bytes":
img = Image.open(BytesIO(sub_item["content"])).convert("RGB")
else:
img = Image.open(sub_item["content"]).convert("RGB")
images.append(img)
else:
raise ValueError(f"Unknown data type {sub_item['type']}")
return text, images
all_texts, all_images = [], []
for item in texts:
text, images = process_text_item(item)
all_texts.append(text)
all_images.extend(images)
# Process inputs through the processor
if all_images:
inputs = self.processor(
text=all_texts,
images=all_images,
padding="longest",
truncation=True,
max_length=self.max_seq_length,
return_tensors="pt"
)
else:
inputs = self.processor(
text=all_texts,
padding="longest",
truncation=True,
max_length=self.max_seq_length,
return_tensors="pt"
)
return inputs
|