|
# To fine-tuning Details |
|
[nielsr/dinov2-base](https://huggingface.co/nielsr/dinov2-base) # pre-trained model from which to fine-tune |
|
|
|
[Graphcore/vit-base-ipu](https://huggingface.co/Graphcore/vit-base-ipu_) # config specific to the IPU (Used POD4) |
|
|
|
How to use in IPU: [https://huggingface.co/internetoftim/dinov2-base/blob/main/image_classification-dinov2-base.ipynb](https://huggingface.co/internetoftim/dinov2-base/blob/main/image_classification-dinov2-base.ipynb) |
|
|
|
Run the notebooks in this repository: |
|
[](https://ipu.dev/3YOs4Js) |
|
|
|
|
|
Poplar SDK: v3.2.1 |
|
|
|
Dataset: |
|
|
|
load a custom dataset from local/remote files or folders using the ImageFolder feature |
|
option 1: local/remote files (supporting the following formats: tar, gzip, zip, xz, rar, zstd) |
|
url = "https://madm.dfki.de/files/sentinel/EuroSAT.zip" |
|
files = list(Path(dataset_dir).rglob("EuroSAT.zip")) |
|
|
|
[](https://www.graphcore.ai/join-community) |