File size: 3,199 Bytes
dd305bd
 
 
 
 
 
 
 
 
 
 
 
 
 
27856e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
language:
- en
tags:
- ai
- observability
- ai-observability
- unsupervised-learning
- anomaly-detection
- model-drift
- llm-monitoring
- mlops
- aiops
- time-series
---
# Model Card for Model ID

<# InsightFinder AI Observability Model – Unsupervised Anomaly Detection for AI and IT Systems

![InsightFinder](https://www.insightfinder.com/wp-content/uploads/2022/04/InsightFinder_logo.png)

## 🧠 Overview

**InsightFinder AI** leverages **patented unsupervised machine learning algorithms** to solve the toughest problems in enterprise AI and IT management. Built on real-time anomaly detection, root cause analysis, and incident prediction, InsightFinder delivers AI Observability and IT Observability solutions that help enterprise-scale organizations:

- Automatically identify, diagnose, and remediate system issues
- Detect and prevent ML model drift and LLM hallucinations
- Ensure data quality in AI pipelines
- Reduce downtime across infrastructure and applications

This model is a core component of the InsightFinder platform, enabling **real-time, unsupervised anomaly detection** across time-series telemetry data β€” without requiring any labeled incidents or predefined thresholds.

πŸ‘‰ Visit [www.insightfinder.com](https://www.insightfinder.com) to learn more.

---

## πŸ” Key Capabilities

- **AI-native observability** across services, containers, AI pipelines, and infrastructure
- **Unsupervised anomaly detection** with no human labeling
- **Streaming inference** for real-time incident prevention
- **Root cause heatmaps** across logs, traces, and metrics
- **Detection of AI-specific issues**: model drift, hallucinations, degraded data quality

---

## 🧰 Primary Use Cases

- Observability for AI/ML pipelines (model/data drift, hallucinations)
- Monitoring large-scale cloud and hybrid infrastructure (Kubernetes, VMs, containers)
- IT incident prediction and proactive remediation
- Log and trace correlation to uncover root causes
- Edge system anomaly detection (IoT, on-prem)

---

## βš™οΈ Model Architecture

- **Architecture**: Variational Autoencoder or Transformer-based time series model *(customizable)*
- Multivariate, asynchronous time-series support
- Self-learning capability with streaming updates
- Trained on production-grade telemetry from real-world environments

---

## πŸ“₯ Input Format

- Time-series telemetry from:
  - Prometheus
  - OpenTelemetry
  - Fluentd / Fluent Bit
  - AWS CloudWatch, Azure Monitor
- Format: JSON or CSV with `timestamp`, `metric_name`, `value`, optional metadata

---

## πŸ“€ Output

- **Anomaly score** (0–1)
- **Anomaly classification** (binary)
- **Root cause probability heatmap**
- **Flags for drift or AI model issues** (optional)

---

## πŸ“Š Evaluation Metrics

- **Precision, Recall, F1-Score** on synthetic and real production incidents
- **ROC-AUC** for anomaly score thresholds
- **Latency**: Sub-second inference (<500ms average)

---

## πŸ“¦ Training Data

- **Anonymized telemetry** from:
  - Microservices and cloud infrastructure
  - Application logs, service traces
  - AI/ML pipeline signals
- No labels or annotations required
- Periodic retraining and adaptive learning supported