erinlm31 commited on
Commit
27856e9
Β·
verified Β·
1 Parent(s): dd305bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -1
README.md CHANGED
@@ -12,4 +12,90 @@ tags:
12
  - mlops
13
  - aiops
14
  - time-series
15
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  - mlops
13
  - aiops
14
  - time-series
15
+ ---
16
+ # Model Card for Model ID
17
+
18
+ <# InsightFinder AI Observability Model – Unsupervised Anomaly Detection for AI and IT Systems
19
+
20
+ ![InsightFinder](https://www.insightfinder.com/wp-content/uploads/2022/04/InsightFinder_logo.png)
21
+
22
+ ## 🧠 Overview
23
+
24
+ **InsightFinder AI** leverages **patented unsupervised machine learning algorithms** to solve the toughest problems in enterprise AI and IT management. Built on real-time anomaly detection, root cause analysis, and incident prediction, InsightFinder delivers AI Observability and IT Observability solutions that help enterprise-scale organizations:
25
+
26
+ - Automatically identify, diagnose, and remediate system issues
27
+ - Detect and prevent ML model drift and LLM hallucinations
28
+ - Ensure data quality in AI pipelines
29
+ - Reduce downtime across infrastructure and applications
30
+
31
+ This model is a core component of the InsightFinder platform, enabling **real-time, unsupervised anomaly detection** across time-series telemetry data β€” without requiring any labeled incidents or predefined thresholds.
32
+
33
+ πŸ‘‰ Visit [www.insightfinder.com](https://www.insightfinder.com) to learn more.
34
+
35
+ ---
36
+
37
+ ## πŸ” Key Capabilities
38
+
39
+ - **AI-native observability** across services, containers, AI pipelines, and infrastructure
40
+ - **Unsupervised anomaly detection** with no human labeling
41
+ - **Streaming inference** for real-time incident prevention
42
+ - **Root cause heatmaps** across logs, traces, and metrics
43
+ - **Detection of AI-specific issues**: model drift, hallucinations, degraded data quality
44
+
45
+ ---
46
+
47
+ ## 🧰 Primary Use Cases
48
+
49
+ - Observability for AI/ML pipelines (model/data drift, hallucinations)
50
+ - Monitoring large-scale cloud and hybrid infrastructure (Kubernetes, VMs, containers)
51
+ - IT incident prediction and proactive remediation
52
+ - Log and trace correlation to uncover root causes
53
+ - Edge system anomaly detection (IoT, on-prem)
54
+
55
+ ---
56
+
57
+ ## βš™οΈ Model Architecture
58
+
59
+ - **Architecture**: Variational Autoencoder or Transformer-based time series model *(customizable)*
60
+ - Multivariate, asynchronous time-series support
61
+ - Self-learning capability with streaming updates
62
+ - Trained on production-grade telemetry from real-world environments
63
+
64
+ ---
65
+
66
+ ## πŸ“₯ Input Format
67
+
68
+ - Time-series telemetry from:
69
+ - Prometheus
70
+ - OpenTelemetry
71
+ - Fluentd / Fluent Bit
72
+ - AWS CloudWatch, Azure Monitor
73
+ - Format: JSON or CSV with `timestamp`, `metric_name`, `value`, optional metadata
74
+
75
+ ---
76
+
77
+ ## πŸ“€ Output
78
+
79
+ - **Anomaly score** (0–1)
80
+ - **Anomaly classification** (binary)
81
+ - **Root cause probability heatmap**
82
+ - **Flags for drift or AI model issues** (optional)
83
+
84
+ ---
85
+
86
+ ## πŸ“Š Evaluation Metrics
87
+
88
+ - **Precision, Recall, F1-Score** on synthetic and real production incidents
89
+ - **ROC-AUC** for anomaly score thresholds
90
+ - **Latency**: Sub-second inference (<500ms average)
91
+
92
+ ---
93
+
94
+ ## πŸ“¦ Training Data
95
+
96
+ - **Anonymized telemetry** from:
97
+ - Microservices and cloud infrastructure
98
+ - Application logs, service traces
99
+ - AI/ML pipeline signals
100
+ - No labels or annotations required
101
+ - Periodic retraining and adaptive learning supported