stella-base-en-v2 / README.md
infgrad's picture
Update README.md
c9e80ff verified
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
model-index:
- name: stella-base-en-v2
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 77.19402985074628
- type: ap
value: 40.43267503017359
- type: f1
value: 71.15585210518594
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.256675
- type: ap
value: 90.00824833079179
- type: f1
value: 93.2473146151734
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 49.612
- type: f1
value: 48.530785631574304
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.411
- type: map_at_10
value: 52.673
- type: map_at_100
value: 53.410999999999994
- type: map_at_1000
value: 53.415
- type: map_at_3
value: 48.495
- type: map_at_5
value: 51.183
- type: mrr_at_1
value: 37.838
- type: mrr_at_10
value: 52.844
- type: mrr_at_100
value: 53.581999999999994
- type: mrr_at_1000
value: 53.586
- type: mrr_at_3
value: 48.672
- type: mrr_at_5
value: 51.272
- type: ndcg_at_1
value: 37.411
- type: ndcg_at_10
value: 60.626999999999995
- type: ndcg_at_100
value: 63.675000000000004
- type: ndcg_at_1000
value: 63.776999999999994
- type: ndcg_at_3
value: 52.148
- type: ndcg_at_5
value: 57.001999999999995
- type: precision_at_1
value: 37.411
- type: precision_at_10
value: 8.578
- type: precision_at_100
value: 0.989
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 20.91
- type: precision_at_5
value: 14.908
- type: recall_at_1
value: 37.411
- type: recall_at_10
value: 85.775
- type: recall_at_100
value: 98.86200000000001
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 62.731
- type: recall_at_5
value: 74.53800000000001
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 47.24219029437865
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.474604844291726
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 62.720542706366054
- type: mrr
value: 75.59633733456448
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 86.31345008397868
- type: cos_sim_spearman
value: 85.94292212320399
- type: euclidean_pearson
value: 85.03974302774525
- type: euclidean_spearman
value: 85.88087251659051
- type: manhattan_pearson
value: 84.91900996712951
- type: manhattan_spearman
value: 85.96701905781116
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 84.72727272727273
- type: f1
value: 84.29572512364581
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 39.55532460397536
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 35.91195973591251
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.822
- type: map_at_10
value: 44.139
- type: map_at_100
value: 45.786
- type: map_at_1000
value: 45.906000000000006
- type: map_at_3
value: 40.637
- type: map_at_5
value: 42.575
- type: mrr_at_1
value: 41.059
- type: mrr_at_10
value: 50.751000000000005
- type: mrr_at_100
value: 51.548
- type: mrr_at_1000
value: 51.583999999999996
- type: mrr_at_3
value: 48.236000000000004
- type: mrr_at_5
value: 49.838
- type: ndcg_at_1
value: 41.059
- type: ndcg_at_10
value: 50.573
- type: ndcg_at_100
value: 56.25
- type: ndcg_at_1000
value: 58.004
- type: ndcg_at_3
value: 45.995000000000005
- type: ndcg_at_5
value: 48.18
- type: precision_at_1
value: 41.059
- type: precision_at_10
value: 9.757
- type: precision_at_100
value: 1.609
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_3
value: 22.222
- type: precision_at_5
value: 16.023
- type: recall_at_1
value: 32.822
- type: recall_at_10
value: 61.794000000000004
- type: recall_at_100
value: 85.64699999999999
- type: recall_at_1000
value: 96.836
- type: recall_at_3
value: 47.999
- type: recall_at_5
value: 54.376999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.579
- type: map_at_10
value: 39.787
- type: map_at_100
value: 40.976
- type: map_at_1000
value: 41.108
- type: map_at_3
value: 36.819
- type: map_at_5
value: 38.437
- type: mrr_at_1
value: 37.516
- type: mrr_at_10
value: 45.822
- type: mrr_at_100
value: 46.454
- type: mrr_at_1000
value: 46.495999999999995
- type: mrr_at_3
value: 43.556
- type: mrr_at_5
value: 44.814
- type: ndcg_at_1
value: 37.516
- type: ndcg_at_10
value: 45.5
- type: ndcg_at_100
value: 49.707
- type: ndcg_at_1000
value: 51.842
- type: ndcg_at_3
value: 41.369
- type: ndcg_at_5
value: 43.161
- type: precision_at_1
value: 37.516
- type: precision_at_10
value: 8.713
- type: precision_at_100
value: 1.38
- type: precision_at_1000
value: 0.188
- type: precision_at_3
value: 20.233999999999998
- type: precision_at_5
value: 14.280000000000001
- type: recall_at_1
value: 29.579
- type: recall_at_10
value: 55.458
- type: recall_at_100
value: 73.49799999999999
- type: recall_at_1000
value: 87.08200000000001
- type: recall_at_3
value: 42.858000000000004
- type: recall_at_5
value: 48.215
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.489999999999995
- type: map_at_10
value: 53.313
- type: map_at_100
value: 54.290000000000006
- type: map_at_1000
value: 54.346000000000004
- type: map_at_3
value: 49.983
- type: map_at_5
value: 51.867
- type: mrr_at_1
value: 46.27
- type: mrr_at_10
value: 56.660999999999994
- type: mrr_at_100
value: 57.274
- type: mrr_at_1000
value: 57.301
- type: mrr_at_3
value: 54.138
- type: mrr_at_5
value: 55.623999999999995
- type: ndcg_at_1
value: 46.27
- type: ndcg_at_10
value: 59.192
- type: ndcg_at_100
value: 63.026
- type: ndcg_at_1000
value: 64.079
- type: ndcg_at_3
value: 53.656000000000006
- type: ndcg_at_5
value: 56.387
- type: precision_at_1
value: 46.27
- type: precision_at_10
value: 9.511
- type: precision_at_100
value: 1.23
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 24.096
- type: precision_at_5
value: 16.476
- type: recall_at_1
value: 40.489999999999995
- type: recall_at_10
value: 73.148
- type: recall_at_100
value: 89.723
- type: recall_at_1000
value: 97.073
- type: recall_at_3
value: 58.363
- type: recall_at_5
value: 65.083
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.197
- type: map_at_10
value: 35.135
- type: map_at_100
value: 36.14
- type: map_at_1000
value: 36.216
- type: map_at_3
value: 32.358
- type: map_at_5
value: 33.814
- type: mrr_at_1
value: 28.475
- type: mrr_at_10
value: 37.096000000000004
- type: mrr_at_100
value: 38.006
- type: mrr_at_1000
value: 38.06
- type: mrr_at_3
value: 34.52
- type: mrr_at_5
value: 35.994
- type: ndcg_at_1
value: 28.475
- type: ndcg_at_10
value: 40.263
- type: ndcg_at_100
value: 45.327
- type: ndcg_at_1000
value: 47.225
- type: ndcg_at_3
value: 34.882000000000005
- type: ndcg_at_5
value: 37.347
- type: precision_at_1
value: 28.475
- type: precision_at_10
value: 6.249
- type: precision_at_100
value: 0.919
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 14.689
- type: precision_at_5
value: 10.237
- type: recall_at_1
value: 26.197
- type: recall_at_10
value: 54.17999999999999
- type: recall_at_100
value: 77.768
- type: recall_at_1000
value: 91.932
- type: recall_at_3
value: 39.804
- type: recall_at_5
value: 45.660000000000004
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.683
- type: map_at_10
value: 25.013999999999996
- type: map_at_100
value: 26.411
- type: map_at_1000
value: 26.531
- type: map_at_3
value: 22.357
- type: map_at_5
value: 23.982999999999997
- type: mrr_at_1
value: 20.896
- type: mrr_at_10
value: 29.758000000000003
- type: mrr_at_100
value: 30.895
- type: mrr_at_1000
value: 30.964999999999996
- type: mrr_at_3
value: 27.177
- type: mrr_at_5
value: 28.799999999999997
- type: ndcg_at_1
value: 20.896
- type: ndcg_at_10
value: 30.294999999999998
- type: ndcg_at_100
value: 36.68
- type: ndcg_at_1000
value: 39.519
- type: ndcg_at_3
value: 25.480999999999998
- type: ndcg_at_5
value: 28.027
- type: precision_at_1
value: 20.896
- type: precision_at_10
value: 5.56
- type: precision_at_100
value: 1.006
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 12.231
- type: precision_at_5
value: 9.104
- type: recall_at_1
value: 16.683
- type: recall_at_10
value: 41.807
- type: recall_at_100
value: 69.219
- type: recall_at_1000
value: 89.178
- type: recall_at_3
value: 28.772
- type: recall_at_5
value: 35.167
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.653000000000002
- type: map_at_10
value: 41.21
- type: map_at_100
value: 42.543
- type: map_at_1000
value: 42.657000000000004
- type: map_at_3
value: 38.094
- type: map_at_5
value: 39.966
- type: mrr_at_1
value: 37.824999999999996
- type: mrr_at_10
value: 47.087
- type: mrr_at_100
value: 47.959
- type: mrr_at_1000
value: 48.003
- type: mrr_at_3
value: 45.043
- type: mrr_at_5
value: 46.352
- type: ndcg_at_1
value: 37.824999999999996
- type: ndcg_at_10
value: 47.158
- type: ndcg_at_100
value: 52.65
- type: ndcg_at_1000
value: 54.644999999999996
- type: ndcg_at_3
value: 42.632999999999996
- type: ndcg_at_5
value: 44.994
- type: precision_at_1
value: 37.824999999999996
- type: precision_at_10
value: 8.498999999999999
- type: precision_at_100
value: 1.308
- type: precision_at_1000
value: 0.166
- type: precision_at_3
value: 20.308
- type: precision_at_5
value: 14.283000000000001
- type: recall_at_1
value: 30.653000000000002
- type: recall_at_10
value: 58.826
- type: recall_at_100
value: 81.94
- type: recall_at_1000
value: 94.71000000000001
- type: recall_at_3
value: 45.965
- type: recall_at_5
value: 52.294
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.71
- type: map_at_10
value: 36.001
- type: map_at_100
value: 37.416
- type: map_at_1000
value: 37.522
- type: map_at_3
value: 32.841
- type: map_at_5
value: 34.515
- type: mrr_at_1
value: 32.647999999999996
- type: mrr_at_10
value: 41.43
- type: mrr_at_100
value: 42.433
- type: mrr_at_1000
value: 42.482
- type: mrr_at_3
value: 39.117000000000004
- type: mrr_at_5
value: 40.35
- type: ndcg_at_1
value: 32.647999999999996
- type: ndcg_at_10
value: 41.629
- type: ndcg_at_100
value: 47.707
- type: ndcg_at_1000
value: 49.913000000000004
- type: ndcg_at_3
value: 36.598000000000006
- type: ndcg_at_5
value: 38.696000000000005
- type: precision_at_1
value: 32.647999999999996
- type: precision_at_10
value: 7.704999999999999
- type: precision_at_100
value: 1.242
- type: precision_at_1000
value: 0.16
- type: precision_at_3
value: 17.314
- type: precision_at_5
value: 12.374
- type: recall_at_1
value: 26.71
- type: recall_at_10
value: 52.898
- type: recall_at_100
value: 79.08
- type: recall_at_1000
value: 93.94
- type: recall_at_3
value: 38.731
- type: recall_at_5
value: 44.433
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.510999999999996
- type: map_at_10
value: 35.755333333333326
- type: map_at_100
value: 36.97525
- type: map_at_1000
value: 37.08741666666667
- type: map_at_3
value: 32.921
- type: map_at_5
value: 34.45041666666667
- type: mrr_at_1
value: 31.578416666666666
- type: mrr_at_10
value: 40.06066666666667
- type: mrr_at_100
value: 40.93350000000001
- type: mrr_at_1000
value: 40.98716666666667
- type: mrr_at_3
value: 37.710499999999996
- type: mrr_at_5
value: 39.033249999999995
- type: ndcg_at_1
value: 31.578416666666666
- type: ndcg_at_10
value: 41.138666666666666
- type: ndcg_at_100
value: 46.37291666666666
- type: ndcg_at_1000
value: 48.587500000000006
- type: ndcg_at_3
value: 36.397083333333335
- type: ndcg_at_5
value: 38.539
- type: precision_at_1
value: 31.578416666666666
- type: precision_at_10
value: 7.221583333333332
- type: precision_at_100
value: 1.1581666666666668
- type: precision_at_1000
value: 0.15416666666666667
- type: precision_at_3
value: 16.758
- type: precision_at_5
value: 11.830916666666665
- type: recall_at_1
value: 26.510999999999996
- type: recall_at_10
value: 52.7825
- type: recall_at_100
value: 75.79675
- type: recall_at_1000
value: 91.10483333333335
- type: recall_at_3
value: 39.48233333333334
- type: recall_at_5
value: 45.07116666666667
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.564
- type: map_at_10
value: 31.235000000000003
- type: map_at_100
value: 32.124
- type: map_at_1000
value: 32.216
- type: map_at_3
value: 29.330000000000002
- type: map_at_5
value: 30.379
- type: mrr_at_1
value: 27.761000000000003
- type: mrr_at_10
value: 34.093
- type: mrr_at_100
value: 34.885
- type: mrr_at_1000
value: 34.957
- type: mrr_at_3
value: 32.388
- type: mrr_at_5
value: 33.269
- type: ndcg_at_1
value: 27.761000000000003
- type: ndcg_at_10
value: 35.146
- type: ndcg_at_100
value: 39.597
- type: ndcg_at_1000
value: 42.163000000000004
- type: ndcg_at_3
value: 31.674000000000003
- type: ndcg_at_5
value: 33.224
- type: precision_at_1
value: 27.761000000000003
- type: precision_at_10
value: 5.383
- type: precision_at_100
value: 0.836
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 13.599
- type: precision_at_5
value: 9.202
- type: recall_at_1
value: 24.564
- type: recall_at_10
value: 44.36
- type: recall_at_100
value: 64.408
- type: recall_at_1000
value: 83.892
- type: recall_at_3
value: 34.653
- type: recall_at_5
value: 38.589
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.01
- type: map_at_10
value: 24.485
- type: map_at_100
value: 25.573
- type: map_at_1000
value: 25.703
- type: map_at_3
value: 21.953
- type: map_at_5
value: 23.294999999999998
- type: mrr_at_1
value: 20.544
- type: mrr_at_10
value: 28.238000000000003
- type: mrr_at_100
value: 29.142000000000003
- type: mrr_at_1000
value: 29.219
- type: mrr_at_3
value: 25.802999999999997
- type: mrr_at_5
value: 27.105
- type: ndcg_at_1
value: 20.544
- type: ndcg_at_10
value: 29.387999999999998
- type: ndcg_at_100
value: 34.603
- type: ndcg_at_1000
value: 37.564
- type: ndcg_at_3
value: 24.731
- type: ndcg_at_5
value: 26.773000000000003
- type: precision_at_1
value: 20.544
- type: precision_at_10
value: 5.509
- type: precision_at_100
value: 0.9450000000000001
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 11.757
- type: precision_at_5
value: 8.596
- type: recall_at_1
value: 17.01
- type: recall_at_10
value: 40.392
- type: recall_at_100
value: 64.043
- type: recall_at_1000
value: 85.031
- type: recall_at_3
value: 27.293
- type: recall_at_5
value: 32.586999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.155
- type: map_at_10
value: 35.92
- type: map_at_100
value: 37.034
- type: map_at_1000
value: 37.139
- type: map_at_3
value: 33.263999999999996
- type: map_at_5
value: 34.61
- type: mrr_at_1
value: 32.183
- type: mrr_at_10
value: 40.099000000000004
- type: mrr_at_100
value: 41.001
- type: mrr_at_1000
value: 41.059
- type: mrr_at_3
value: 37.889
- type: mrr_at_5
value: 39.007999999999996
- type: ndcg_at_1
value: 32.183
- type: ndcg_at_10
value: 41.127
- type: ndcg_at_100
value: 46.464
- type: ndcg_at_1000
value: 48.67
- type: ndcg_at_3
value: 36.396
- type: ndcg_at_5
value: 38.313
- type: precision_at_1
value: 32.183
- type: precision_at_10
value: 6.847
- type: precision_at_100
value: 1.0739999999999998
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 16.356
- type: precision_at_5
value: 11.362
- type: recall_at_1
value: 27.155
- type: recall_at_10
value: 52.922000000000004
- type: recall_at_100
value: 76.39
- type: recall_at_1000
value: 91.553
- type: recall_at_3
value: 39.745999999999995
- type: recall_at_5
value: 44.637
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.523
- type: map_at_10
value: 34.268
- type: map_at_100
value: 35.835
- type: map_at_1000
value: 36.046
- type: map_at_3
value: 31.662000000000003
- type: map_at_5
value: 32.71
- type: mrr_at_1
value: 31.028
- type: mrr_at_10
value: 38.924
- type: mrr_at_100
value: 39.95
- type: mrr_at_1000
value: 40.003
- type: mrr_at_3
value: 36.594
- type: mrr_at_5
value: 37.701
- type: ndcg_at_1
value: 31.028
- type: ndcg_at_10
value: 39.848
- type: ndcg_at_100
value: 45.721000000000004
- type: ndcg_at_1000
value: 48.424
- type: ndcg_at_3
value: 35.329
- type: ndcg_at_5
value: 36.779
- type: precision_at_1
value: 31.028
- type: precision_at_10
value: 7.51
- type: precision_at_100
value: 1.478
- type: precision_at_1000
value: 0.24
- type: precision_at_3
value: 16.337
- type: precision_at_5
value: 11.383000000000001
- type: recall_at_1
value: 25.523
- type: recall_at_10
value: 50.735
- type: recall_at_100
value: 76.593
- type: recall_at_1000
value: 93.771
- type: recall_at_3
value: 37.574000000000005
- type: recall_at_5
value: 41.602
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 20.746000000000002
- type: map_at_10
value: 28.557
- type: map_at_100
value: 29.575000000000003
- type: map_at_1000
value: 29.659000000000002
- type: map_at_3
value: 25.753999999999998
- type: map_at_5
value: 27.254
- type: mrr_at_1
value: 22.736
- type: mrr_at_10
value: 30.769000000000002
- type: mrr_at_100
value: 31.655
- type: mrr_at_1000
value: 31.717000000000002
- type: mrr_at_3
value: 28.065
- type: mrr_at_5
value: 29.543999999999997
- type: ndcg_at_1
value: 22.736
- type: ndcg_at_10
value: 33.545
- type: ndcg_at_100
value: 38.743
- type: ndcg_at_1000
value: 41.002
- type: ndcg_at_3
value: 28.021
- type: ndcg_at_5
value: 30.586999999999996
- type: precision_at_1
value: 22.736
- type: precision_at_10
value: 5.416
- type: precision_at_100
value: 0.8710000000000001
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 11.953
- type: precision_at_5
value: 8.651
- type: recall_at_1
value: 20.746000000000002
- type: recall_at_10
value: 46.87
- type: recall_at_100
value: 71.25200000000001
- type: recall_at_1000
value: 88.26
- type: recall_at_3
value: 32.029999999999994
- type: recall_at_5
value: 38.21
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 12.105
- type: map_at_10
value: 20.577
- type: map_at_100
value: 22.686999999999998
- type: map_at_1000
value: 22.889
- type: map_at_3
value: 17.174
- type: map_at_5
value: 18.807
- type: mrr_at_1
value: 27.101
- type: mrr_at_10
value: 38.475
- type: mrr_at_100
value: 39.491
- type: mrr_at_1000
value: 39.525
- type: mrr_at_3
value: 34.886
- type: mrr_at_5
value: 36.922
- type: ndcg_at_1
value: 27.101
- type: ndcg_at_10
value: 29.002
- type: ndcg_at_100
value: 37.218
- type: ndcg_at_1000
value: 40.644000000000005
- type: ndcg_at_3
value: 23.464
- type: ndcg_at_5
value: 25.262
- type: precision_at_1
value: 27.101
- type: precision_at_10
value: 9.179
- type: precision_at_100
value: 1.806
- type: precision_at_1000
value: 0.244
- type: precision_at_3
value: 17.394000000000002
- type: precision_at_5
value: 13.342
- type: recall_at_1
value: 12.105
- type: recall_at_10
value: 35.143
- type: recall_at_100
value: 63.44499999999999
- type: recall_at_1000
value: 82.49499999999999
- type: recall_at_3
value: 21.489
- type: recall_at_5
value: 26.82
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.769
- type: map_at_10
value: 18.619
- type: map_at_100
value: 26.3
- type: map_at_1000
value: 28.063
- type: map_at_3
value: 13.746
- type: map_at_5
value: 16.035
- type: mrr_at_1
value: 65.25
- type: mrr_at_10
value: 73.678
- type: mrr_at_100
value: 73.993
- type: mrr_at_1000
value: 74.003
- type: mrr_at_3
value: 72.042
- type: mrr_at_5
value: 72.992
- type: ndcg_at_1
value: 53.625
- type: ndcg_at_10
value: 39.638
- type: ndcg_at_100
value: 44.601
- type: ndcg_at_1000
value: 52.80200000000001
- type: ndcg_at_3
value: 44.727
- type: ndcg_at_5
value: 42.199
- type: precision_at_1
value: 65.25
- type: precision_at_10
value: 31.025000000000002
- type: precision_at_100
value: 10.174999999999999
- type: precision_at_1000
value: 2.0740000000000003
- type: precision_at_3
value: 48.083
- type: precision_at_5
value: 40.6
- type: recall_at_1
value: 8.769
- type: recall_at_10
value: 23.910999999999998
- type: recall_at_100
value: 51.202999999999996
- type: recall_at_1000
value: 77.031
- type: recall_at_3
value: 15.387999999999998
- type: recall_at_5
value: 18.919
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 54.47
- type: f1
value: 48.21839043361556
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 63.564
- type: map_at_10
value: 74.236
- type: map_at_100
value: 74.53699999999999
- type: map_at_1000
value: 74.557
- type: map_at_3
value: 72.556
- type: map_at_5
value: 73.656
- type: mrr_at_1
value: 68.497
- type: mrr_at_10
value: 78.373
- type: mrr_at_100
value: 78.54299999999999
- type: mrr_at_1000
value: 78.549
- type: mrr_at_3
value: 77.03
- type: mrr_at_5
value: 77.938
- type: ndcg_at_1
value: 68.497
- type: ndcg_at_10
value: 79.12599999999999
- type: ndcg_at_100
value: 80.319
- type: ndcg_at_1000
value: 80.71199999999999
- type: ndcg_at_3
value: 76.209
- type: ndcg_at_5
value: 77.90700000000001
- type: precision_at_1
value: 68.497
- type: precision_at_10
value: 9.958
- type: precision_at_100
value: 1.077
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 29.908
- type: precision_at_5
value: 18.971
- type: recall_at_1
value: 63.564
- type: recall_at_10
value: 90.05199999999999
- type: recall_at_100
value: 95.028
- type: recall_at_1000
value: 97.667
- type: recall_at_3
value: 82.17999999999999
- type: recall_at_5
value: 86.388
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.042
- type: map_at_10
value: 30.764999999999997
- type: map_at_100
value: 32.678000000000004
- type: map_at_1000
value: 32.881
- type: map_at_3
value: 26.525
- type: map_at_5
value: 28.932000000000002
- type: mrr_at_1
value: 37.653999999999996
- type: mrr_at_10
value: 46.597
- type: mrr_at_100
value: 47.413
- type: mrr_at_1000
value: 47.453
- type: mrr_at_3
value: 43.775999999999996
- type: mrr_at_5
value: 45.489000000000004
- type: ndcg_at_1
value: 37.653999999999996
- type: ndcg_at_10
value: 38.615
- type: ndcg_at_100
value: 45.513999999999996
- type: ndcg_at_1000
value: 48.815999999999995
- type: ndcg_at_3
value: 34.427
- type: ndcg_at_5
value: 35.954
- type: precision_at_1
value: 37.653999999999996
- type: precision_at_10
value: 10.864
- type: precision_at_100
value: 1.7850000000000001
- type: precision_at_1000
value: 0.23800000000000002
- type: precision_at_3
value: 22.788
- type: precision_at_5
value: 17.346
- type: recall_at_1
value: 19.042
- type: recall_at_10
value: 45.707
- type: recall_at_100
value: 71.152
- type: recall_at_1000
value: 90.7
- type: recall_at_3
value: 30.814000000000004
- type: recall_at_5
value: 37.478
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.001000000000005
- type: map_at_10
value: 59.611000000000004
- type: map_at_100
value: 60.582
- type: map_at_1000
value: 60.646
- type: map_at_3
value: 56.031
- type: map_at_5
value: 58.243
- type: mrr_at_1
value: 76.003
- type: mrr_at_10
value: 82.15400000000001
- type: mrr_at_100
value: 82.377
- type: mrr_at_1000
value: 82.383
- type: mrr_at_3
value: 81.092
- type: mrr_at_5
value: 81.742
- type: ndcg_at_1
value: 76.003
- type: ndcg_at_10
value: 68.216
- type: ndcg_at_100
value: 71.601
- type: ndcg_at_1000
value: 72.821
- type: ndcg_at_3
value: 63.109
- type: ndcg_at_5
value: 65.902
- type: precision_at_1
value: 76.003
- type: precision_at_10
value: 14.379
- type: precision_at_100
value: 1.702
- type: precision_at_1000
value: 0.186
- type: precision_at_3
value: 40.396
- type: precision_at_5
value: 26.442
- type: recall_at_1
value: 38.001000000000005
- type: recall_at_10
value: 71.897
- type: recall_at_100
value: 85.105
- type: recall_at_1000
value: 93.133
- type: recall_at_3
value: 60.594
- type: recall_at_5
value: 66.104
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 91.31280000000001
- type: ap
value: 87.53723467501632
- type: f1
value: 91.30282906596291
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.917
- type: map_at_10
value: 34.117999999999995
- type: map_at_100
value: 35.283
- type: map_at_1000
value: 35.333999999999996
- type: map_at_3
value: 30.330000000000002
- type: map_at_5
value: 32.461
- type: mrr_at_1
value: 22.579
- type: mrr_at_10
value: 34.794000000000004
- type: mrr_at_100
value: 35.893
- type: mrr_at_1000
value: 35.937000000000005
- type: mrr_at_3
value: 31.091
- type: mrr_at_5
value: 33.173
- type: ndcg_at_1
value: 22.579
- type: ndcg_at_10
value: 40.951
- type: ndcg_at_100
value: 46.558
- type: ndcg_at_1000
value: 47.803000000000004
- type: ndcg_at_3
value: 33.262
- type: ndcg_at_5
value: 37.036
- type: precision_at_1
value: 22.579
- type: precision_at_10
value: 6.463000000000001
- type: precision_at_100
value: 0.928
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.174000000000001
- type: precision_at_5
value: 10.421
- type: recall_at_1
value: 21.917
- type: recall_at_10
value: 61.885
- type: recall_at_100
value: 87.847
- type: recall_at_1000
value: 97.322
- type: recall_at_3
value: 41.010000000000005
- type: recall_at_5
value: 50.031000000000006
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.49521203830369
- type: f1
value: 93.30882341740241
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 71.0579115367077
- type: f1
value: 51.2368258319339
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.88029589778077
- type: f1
value: 72.34422048584663
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.2817753866846
- type: f1
value: 77.87746050004304
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.247341454119216
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 31.9647477166234
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.90698374676892
- type: mrr
value: 33.07523683771251
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.717
- type: map_at_10
value: 14.566
- type: map_at_100
value: 18.465999999999998
- type: map_at_1000
value: 20.033
- type: map_at_3
value: 10.863
- type: map_at_5
value: 12.589
- type: mrr_at_1
value: 49.845
- type: mrr_at_10
value: 58.385
- type: mrr_at_100
value: 58.989999999999995
- type: mrr_at_1000
value: 59.028999999999996
- type: mrr_at_3
value: 56.76
- type: mrr_at_5
value: 57.766
- type: ndcg_at_1
value: 47.678
- type: ndcg_at_10
value: 37.511
- type: ndcg_at_100
value: 34.537
- type: ndcg_at_1000
value: 43.612
- type: ndcg_at_3
value: 43.713
- type: ndcg_at_5
value: 41.303
- type: precision_at_1
value: 49.845
- type: precision_at_10
value: 27.307
- type: precision_at_100
value: 8.746
- type: precision_at_1000
value: 2.182
- type: precision_at_3
value: 40.764
- type: precision_at_5
value: 35.232
- type: recall_at_1
value: 6.717
- type: recall_at_10
value: 18.107
- type: recall_at_100
value: 33.759
- type: recall_at_1000
value: 67.31
- type: recall_at_3
value: 11.68
- type: recall_at_5
value: 14.557999999999998
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.633999999999997
- type: map_at_10
value: 42.400999999999996
- type: map_at_100
value: 43.561
- type: map_at_1000
value: 43.592
- type: map_at_3
value: 37.865
- type: map_at_5
value: 40.650999999999996
- type: mrr_at_1
value: 31.286
- type: mrr_at_10
value: 44.996
- type: mrr_at_100
value: 45.889
- type: mrr_at_1000
value: 45.911
- type: mrr_at_3
value: 41.126000000000005
- type: mrr_at_5
value: 43.536
- type: ndcg_at_1
value: 31.257
- type: ndcg_at_10
value: 50.197
- type: ndcg_at_100
value: 55.062
- type: ndcg_at_1000
value: 55.81700000000001
- type: ndcg_at_3
value: 41.650999999999996
- type: ndcg_at_5
value: 46.324
- type: precision_at_1
value: 31.257
- type: precision_at_10
value: 8.508000000000001
- type: precision_at_100
value: 1.121
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 19.1
- type: precision_at_5
value: 14.16
- type: recall_at_1
value: 27.633999999999997
- type: recall_at_10
value: 71.40100000000001
- type: recall_at_100
value: 92.463
- type: recall_at_1000
value: 98.13199999999999
- type: recall_at_3
value: 49.382
- type: recall_at_5
value: 60.144
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.17099999999999
- type: map_at_10
value: 85.036
- type: map_at_100
value: 85.67099999999999
- type: map_at_1000
value: 85.68599999999999
- type: map_at_3
value: 82.086
- type: map_at_5
value: 83.956
- type: mrr_at_1
value: 82.04
- type: mrr_at_10
value: 88.018
- type: mrr_at_100
value: 88.114
- type: mrr_at_1000
value: 88.115
- type: mrr_at_3
value: 87.047
- type: mrr_at_5
value: 87.73100000000001
- type: ndcg_at_1
value: 82.03
- type: ndcg_at_10
value: 88.717
- type: ndcg_at_100
value: 89.904
- type: ndcg_at_1000
value: 89.991
- type: ndcg_at_3
value: 85.89099999999999
- type: ndcg_at_5
value: 87.485
- type: precision_at_1
value: 82.03
- type: precision_at_10
value: 13.444999999999999
- type: precision_at_100
value: 1.533
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.537
- type: precision_at_5
value: 24.692
- type: recall_at_1
value: 71.17099999999999
- type: recall_at_10
value: 95.634
- type: recall_at_100
value: 99.614
- type: recall_at_1000
value: 99.99
- type: recall_at_3
value: 87.48
- type: recall_at_5
value: 91.996
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 55.067219624685315
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 62.121822992300444
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.153
- type: map_at_10
value: 11.024000000000001
- type: map_at_100
value: 13.233
- type: map_at_1000
value: 13.62
- type: map_at_3
value: 7.779999999999999
- type: map_at_5
value: 9.529
- type: mrr_at_1
value: 20.599999999999998
- type: mrr_at_10
value: 31.361
- type: mrr_at_100
value: 32.738
- type: mrr_at_1000
value: 32.792
- type: mrr_at_3
value: 28.15
- type: mrr_at_5
value: 30.085
- type: ndcg_at_1
value: 20.599999999999998
- type: ndcg_at_10
value: 18.583
- type: ndcg_at_100
value: 27.590999999999998
- type: ndcg_at_1000
value: 34.001
- type: ndcg_at_3
value: 17.455000000000002
- type: ndcg_at_5
value: 15.588
- type: precision_at_1
value: 20.599999999999998
- type: precision_at_10
value: 9.74
- type: precision_at_100
value: 2.284
- type: precision_at_1000
value: 0.381
- type: precision_at_3
value: 16.533
- type: precision_at_5
value: 14.02
- type: recall_at_1
value: 4.153
- type: recall_at_10
value: 19.738
- type: recall_at_100
value: 46.322
- type: recall_at_1000
value: 77.378
- type: recall_at_3
value: 10.048
- type: recall_at_5
value: 14.233
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.07097501003639
- type: cos_sim_spearman
value: 81.05827848407056
- type: euclidean_pearson
value: 82.6279003372546
- type: euclidean_spearman
value: 81.00031515279802
- type: manhattan_pearson
value: 82.59338284959495
- type: manhattan_spearman
value: 80.97432711064945
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 86.28991993621685
- type: cos_sim_spearman
value: 78.71828082424351
- type: euclidean_pearson
value: 83.4881331520832
- type: euclidean_spearman
value: 78.51746826842316
- type: manhattan_pearson
value: 83.4109223774324
- type: manhattan_spearman
value: 78.431544382179
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 83.16651661072123
- type: cos_sim_spearman
value: 84.88094386637867
- type: euclidean_pearson
value: 84.3547603585416
- type: euclidean_spearman
value: 84.85148665860193
- type: manhattan_pearson
value: 84.29648369879266
- type: manhattan_spearman
value: 84.76074870571124
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 83.40596254292149
- type: cos_sim_spearman
value: 83.10699573133829
- type: euclidean_pearson
value: 83.22794776876958
- type: euclidean_spearman
value: 83.22583316084712
- type: manhattan_pearson
value: 83.15899233935681
- type: manhattan_spearman
value: 83.17668293648019
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.27977121352563
- type: cos_sim_spearman
value: 88.73903130248591
- type: euclidean_pearson
value: 88.30685958438735
- type: euclidean_spearman
value: 88.79755484280406
- type: manhattan_pearson
value: 88.30305607758652
- type: manhattan_spearman
value: 88.80096577072784
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.08819031430218
- type: cos_sim_spearman
value: 86.35414445951125
- type: euclidean_pearson
value: 85.4683192388315
- type: euclidean_spearman
value: 86.2079674669473
- type: manhattan_pearson
value: 85.35835702257341
- type: manhattan_spearman
value: 86.08483380002187
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.36149449801478
- type: cos_sim_spearman
value: 87.7102980757725
- type: euclidean_pearson
value: 88.16457177837161
- type: euclidean_spearman
value: 87.6598652482716
- type: manhattan_pearson
value: 88.23894728971618
- type: manhattan_spearman
value: 87.74470156709361
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.54023758394433
- type: cos_sim_spearman
value: 66.28491960187773
- type: euclidean_pearson
value: 67.0853128483472
- type: euclidean_spearman
value: 66.10307543766307
- type: manhattan_pearson
value: 66.7635365592556
- type: manhattan_spearman
value: 65.76408004780167
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 85.15858398195317
- type: cos_sim_spearman
value: 87.44850004752102
- type: euclidean_pearson
value: 86.60737082550408
- type: euclidean_spearman
value: 87.31591549824242
- type: manhattan_pearson
value: 86.56187011429977
- type: manhattan_spearman
value: 87.23854795795319
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 86.66210488769109
- type: mrr
value: 96.23100664767331
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 56.094
- type: map_at_10
value: 67.486
- type: map_at_100
value: 67.925
- type: map_at_1000
value: 67.949
- type: map_at_3
value: 64.857
- type: map_at_5
value: 66.31
- type: mrr_at_1
value: 58.667
- type: mrr_at_10
value: 68.438
- type: mrr_at_100
value: 68.733
- type: mrr_at_1000
value: 68.757
- type: mrr_at_3
value: 66.389
- type: mrr_at_5
value: 67.456
- type: ndcg_at_1
value: 58.667
- type: ndcg_at_10
value: 72.506
- type: ndcg_at_100
value: 74.27
- type: ndcg_at_1000
value: 74.94800000000001
- type: ndcg_at_3
value: 67.977
- type: ndcg_at_5
value: 70.028
- type: precision_at_1
value: 58.667
- type: precision_at_10
value: 9.767000000000001
- type: precision_at_100
value: 1.073
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 27.0
- type: precision_at_5
value: 17.666999999999998
- type: recall_at_1
value: 56.094
- type: recall_at_10
value: 86.68900000000001
- type: recall_at_100
value: 94.333
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 74.522
- type: recall_at_5
value: 79.611
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.83069306930693
- type: cos_sim_ap
value: 95.69184662911199
- type: cos_sim_f1
value: 91.4027149321267
- type: cos_sim_precision
value: 91.91102123356926
- type: cos_sim_recall
value: 90.9
- type: dot_accuracy
value: 99.69405940594059
- type: dot_ap
value: 90.21674151456216
- type: dot_f1
value: 84.4489179667841
- type: dot_precision
value: 85.00506585612969
- type: dot_recall
value: 83.89999999999999
- type: euclidean_accuracy
value: 99.83069306930693
- type: euclidean_ap
value: 95.67760109671087
- type: euclidean_f1
value: 91.19754350051177
- type: euclidean_precision
value: 93.39622641509435
- type: euclidean_recall
value: 89.1
- type: manhattan_accuracy
value: 99.83267326732673
- type: manhattan_ap
value: 95.69771347732625
- type: manhattan_f1
value: 91.32420091324201
- type: manhattan_precision
value: 92.68795056642637
- type: manhattan_recall
value: 90.0
- type: max_accuracy
value: 99.83267326732673
- type: max_ap
value: 95.69771347732625
- type: max_f1
value: 91.4027149321267
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 64.47378332953092
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.79602531604151
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 53.80707639107175
- type: mrr
value: 54.64886522790935
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.852448373051395
- type: cos_sim_spearman
value: 32.51821499493775
- type: dot_pearson
value: 30.390650062190456
- type: dot_spearman
value: 30.588836159667636
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.198
- type: map_at_10
value: 1.51
- type: map_at_100
value: 8.882
- type: map_at_1000
value: 22.181
- type: map_at_3
value: 0.553
- type: map_at_5
value: 0.843
- type: mrr_at_1
value: 74.0
- type: mrr_at_10
value: 84.89999999999999
- type: mrr_at_100
value: 84.89999999999999
- type: mrr_at_1000
value: 84.89999999999999
- type: mrr_at_3
value: 84.0
- type: mrr_at_5
value: 84.89999999999999
- type: ndcg_at_1
value: 68.0
- type: ndcg_at_10
value: 64.792
- type: ndcg_at_100
value: 51.37199999999999
- type: ndcg_at_1000
value: 47.392
- type: ndcg_at_3
value: 68.46900000000001
- type: ndcg_at_5
value: 67.084
- type: precision_at_1
value: 74.0
- type: precision_at_10
value: 69.39999999999999
- type: precision_at_100
value: 53.080000000000005
- type: precision_at_1000
value: 21.258
- type: precision_at_3
value: 76.0
- type: precision_at_5
value: 73.2
- type: recall_at_1
value: 0.198
- type: recall_at_10
value: 1.7950000000000002
- type: recall_at_100
value: 12.626999999999999
- type: recall_at_1000
value: 44.84
- type: recall_at_3
value: 0.611
- type: recall_at_5
value: 0.959
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.4949999999999999
- type: map_at_10
value: 8.797
- type: map_at_100
value: 14.889
- type: map_at_1000
value: 16.309
- type: map_at_3
value: 4.389
- type: map_at_5
value: 6.776
- type: mrr_at_1
value: 18.367
- type: mrr_at_10
value: 35.844
- type: mrr_at_100
value: 37.119
- type: mrr_at_1000
value: 37.119
- type: mrr_at_3
value: 30.612000000000002
- type: mrr_at_5
value: 33.163
- type: ndcg_at_1
value: 16.326999999999998
- type: ndcg_at_10
value: 21.9
- type: ndcg_at_100
value: 34.705000000000005
- type: ndcg_at_1000
value: 45.709
- type: ndcg_at_3
value: 22.7
- type: ndcg_at_5
value: 23.197000000000003
- type: precision_at_1
value: 18.367
- type: precision_at_10
value: 21.02
- type: precision_at_100
value: 7.714
- type: precision_at_1000
value: 1.504
- type: precision_at_3
value: 26.531
- type: precision_at_5
value: 26.122
- type: recall_at_1
value: 1.4949999999999999
- type: recall_at_10
value: 15.504000000000001
- type: recall_at_100
value: 47.978
- type: recall_at_1000
value: 81.56
- type: recall_at_3
value: 5.569
- type: recall_at_5
value: 9.821
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 72.99279999999999
- type: ap
value: 15.459189680101492
- type: f1
value: 56.33023271441895
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 63.070175438596486
- type: f1
value: 63.28070758709465
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 50.076231309703054
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.21463908922931
- type: cos_sim_ap
value: 77.67287017966282
- type: cos_sim_f1
value: 70.34412955465588
- type: cos_sim_precision
value: 67.57413709285368
- type: cos_sim_recall
value: 73.35092348284961
- type: dot_accuracy
value: 85.04500208618943
- type: dot_ap
value: 70.4075203869744
- type: dot_f1
value: 66.18172537008678
- type: dot_precision
value: 64.08798813643104
- type: dot_recall
value: 68.41688654353561
- type: euclidean_accuracy
value: 87.17887584192646
- type: euclidean_ap
value: 77.5774128274464
- type: euclidean_f1
value: 70.09307972480777
- type: euclidean_precision
value: 71.70852884349986
- type: euclidean_recall
value: 68.54881266490766
- type: manhattan_accuracy
value: 87.28020504261787
- type: manhattan_ap
value: 77.57835820297892
- type: manhattan_f1
value: 70.23063591521131
- type: manhattan_precision
value: 70.97817299919159
- type: manhattan_recall
value: 69.49868073878628
- type: max_accuracy
value: 87.28020504261787
- type: max_ap
value: 77.67287017966282
- type: max_f1
value: 70.34412955465588
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.96650754841464
- type: cos_sim_ap
value: 86.00185968965064
- type: cos_sim_f1
value: 77.95861256351718
- type: cos_sim_precision
value: 74.70712773465067
- type: cos_sim_recall
value: 81.50600554357868
- type: dot_accuracy
value: 87.36950362867233
- type: dot_ap
value: 82.22071181147555
- type: dot_f1
value: 74.85680716698488
- type: dot_precision
value: 71.54688377316114
- type: dot_recall
value: 78.48783492454572
- type: euclidean_accuracy
value: 88.99561454573679
- type: euclidean_ap
value: 86.15882097229648
- type: euclidean_f1
value: 78.18463125322332
- type: euclidean_precision
value: 74.95408956067241
- type: euclidean_recall
value: 81.70619032953496
- type: manhattan_accuracy
value: 88.96650754841464
- type: manhattan_ap
value: 86.13133111232099
- type: manhattan_f1
value: 78.10771470160115
- type: manhattan_precision
value: 74.05465084184377
- type: manhattan_recall
value: 82.63012011087157
- type: max_accuracy
value: 88.99561454573679
- type: max_ap
value: 86.15882097229648
- type: max_f1
value: 78.18463125322332
language:
- en
license: mit
---
**新闻 | News**
**[2024-04-06]** 开源[puff](https://huggingface.co/infgrad/puff-base-v1)系列模型,**专门针对检索和语义匹配任务,更多的考虑泛化性和私有通用测试集效果,向量维度可变,中英双语**
**[2024-02-27]** 开源stella-mrl-large-zh-v3.5-1792d模型,支持**向量可变维度**
**[2024-02-17]** 开源stella v3系列、dialogue编码模型和相关训练数据。
**[2023-10-19]** 开源stella-base-en-v2 使用简单,**不需要任何前缀文本**
**[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**
**[2023-09-11]** 开源stella-base-zh和stella-large-zh
欢迎去[本人主页](https://huggingface.co/infgrad)查看最新模型,并提出您的宝贵意见!
## stella model
stella是一个通用的文本编码模型,主要有以下模型:
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No |
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
完整的训练思路和训练过程已记录在[博客1](https://zhuanlan.zhihu.com/p/655322183)和[博客2](https://zhuanlan.zhihu.com/p/662209559),欢迎阅读讨论。
**训练数据:**
1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本
2. 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据
**训练方法:**
1. 对比学习损失函数
2. 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例)
3. EWC(Elastic Weights Consolidation)[4]
4. cosent loss[5]
5. 每一种类型的数据一个迭代器,分别计算loss进行更新
stella-v2在stella模型的基础上,使用了更多的训练数据,同时知识蒸馏等方法去除了前置的instruction(
比如piccolo的`查询:`, `结果:`, e5的`query:``passage:`)。
**初始权重:**\
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position
embedding使用层次分解位置编码[7]进行初始化。\
感谢商汤科技研究院开源的[piccolo系列模型](https://huggingface.co/sensenova)。
stella is a general-purpose text encoder, which mainly includes the following models:
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No |
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
The training data mainly includes:
1. Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater
than 512.
2. A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM.
The loss functions mainly include:
1. Contrastive learning loss function
2. Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives)
3. EWC (Elastic Weights Consolidation)
4. cosent loss
Model weight initialization:\
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding.
Training strategy:\
One iterator for each type of data, separately calculating the loss.
Based on stella models, stella-v2 use more training data and remove instruction by Knowledge Distillation.
## Metric
#### C-MTEB leaderboard (Chinese)
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 |
| stella-base-zh-v2 | 0.2 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.95 | 66.1 | 70.08 | 56.92 |
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 |
| stella-base-zh | 0.2 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 |
#### MTEB leaderboard (English)
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Classification (12) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) |
|:-----------------:|:---------------:|:---------:|:---------------:|:------------:|:-------------------:|:---------------:|:-----------------------:|:-------------:|:--------------:|:--------:|:------------------:|
| stella-base-en-v2 | 0.2 | 768 | 512 | 62.61 | 75.28 | 44.9 | 86.45 | 58.77 | 50.1 | 83.02 | 32.52 |
#### Reproduce our results
**C-MTEB:**
```python
import torch
import numpy as np
from typing import List
from mteb import MTEB
from sentence_transformers import SentenceTransformer
class FastTextEncoder():
def __init__(self, model_name):
self.model = SentenceTransformer(model_name).cuda().half().eval()
self.model.max_seq_length = 512
def encode(
self,
input_texts: List[str],
*args,
**kwargs
):
new_sens = list(set(input_texts))
new_sens.sort(key=lambda x: len(x), reverse=True)
vecs = self.model.encode(
new_sens, normalize_embeddings=True, convert_to_numpy=True, batch_size=256
).astype(np.float32)
sen2arrid = {sen: idx for idx, sen in enumerate(new_sens)}
vecs = vecs[[sen2arrid[sen] for sen in input_texts]]
torch.cuda.empty_cache()
return vecs
if __name__ == '__main__':
model_name = "infgrad/stella-base-zh-v2"
output_folder = "zh_mteb_results/stella-base-zh-v2"
task_names = [t.description["name"] for t in MTEB(task_langs=['zh', 'zh-CN']).tasks]
model = FastTextEncoder(model_name)
for task in task_names:
MTEB(tasks=[task], task_langs=['zh', 'zh-CN']).run(model, output_folder=output_folder)
```
**MTEB:**
You can use official script to reproduce our result. [scripts/run_mteb_english.py](https://github.com/embeddings-benchmark/mteb/blob/main/scripts/run_mteb_english.py)
#### Evaluation for long text
经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的,
更致命的是那些长度大于512的文本,其重点都在前半部分
这里以CMRC2018的数据为例说明这个问题:
```
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏?
passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......
```
passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。\
简言之,现有数据集的2个问题:\
1)长度大于512的过少\
2)即便大于512,对于检索而言也只需要前512的文本内容\
导致**无法准确评估模型的长文本编码能力。**
为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是:
- CMRC2018,通用百科
- CAIL,法律阅读理解
- DRCD,繁体百科,已转简体
- Military,军工问答
- Squad,英文阅读理解,已转中文
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]
处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。
除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing
评测指标为Recall@5, 结果如下:
| Dataset | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh |
|:---------------:|:---------------:|:----------------:|:-----------:|:------------:|:--------------:|:---------------:|
| CMRC2018 | 94.34 | 93.82 | 91.56 | 93.12 | 96.08 | 95.56 |
| CAIL | 28.04 | 33.64 | 31.22 | 33.94 | 34.62 | 37.18 |
| DRCD | 78.25 | 77.9 | 78.34 | 80.26 | 86.14 | 84.58 |
| Military | 76.61 | 73.06 | 75.65 | 75.81 | 83.71 | 80.48 |
| Squad | 91.21 | 86.61 | 87.87 | 90.38 | 93.31 | 91.21 |
| Multifieldqa_zh | 81.41 | 83.92 | 83.92 | 83.42 | 79.9 | 80.4 |
| **Average** | 74.98 | 74.83 | 74.76 | 76.15 | **78.96** | **78.24** |
**注意:** 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。
## Usage
#### stella 中文系列模型
stella-base-zh 和 stella-large-zh: 本模型是在piccolo基础上训练的,因此**用法和piccolo完全一致**
,即在检索重排任务上给query和passage加上`查询: ``结果: `。对于短短匹配不需要做任何操作。
stella-base-zh-v2 和 stella-large-zh-v2: 本模型使用简单,**任何使用场景中都不需要加前缀文本**
stella中文系列模型均使用mean pooling做为文本向量。
在sentence-transformer库中的使用方法:
```python
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('infgrad/stella-base-zh-v2')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
直接使用transformers库:
```python
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize
model = AutoModel.from_pretrained('infgrad/stella-base-zh-v2')
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh-v2')
sentences = ["数据1", "数据ABCDEFGH"]
batch_data = tokenizer(
batch_text_or_text_pairs=sentences,
padding="longest",
return_tensors="pt",
max_length=1024,
truncation=True,
)
attention_mask = batch_data["attention_mask"]
model_output = model(**batch_data)
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
vectors = normalize(vectors, norm="l2", axis=1, )
print(vectors.shape) # 2,768
```
#### stella models for English
**Using Sentence-Transformers:**
```python
from sentence_transformers import SentenceTransformer
sentences = ["one car come", "one car go"]
model = SentenceTransformer('infgrad/stella-base-en-v2')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
**Using HuggingFace Transformers:**
```python
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize
model = AutoModel.from_pretrained('infgrad/stella-base-en-v2')
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-en-v2')
sentences = ["one car come", "one car go"]
batch_data = tokenizer(
batch_text_or_text_pairs=sentences,
padding="longest",
return_tensors="pt",
max_length=512,
truncation=True,
)
attention_mask = batch_data["attention_mask"]
model_output = model(**batch_data)
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
vectors = normalize(vectors, norm="l2", axis=1, )
print(vectors.shape) # 2,768
```
## Training Detail
**硬件:** 单卡A100-80GB
**环境:** torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing
**学习率:** 1e-6
**batch_size:** base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例
**数据量:** 第一版模型约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b。v2系列模型到了2000万训练数据。
## ToDoList
**评测的稳定性:**
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,原因是聚类代码没有设置random_seed,差距可以忽略不计,不影响评测结论。
**更高质量的长文本训练和测试数据:** 训练数据多是用13b模型构造的,肯定会存在噪声。
测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。
**OOD的性能:** 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere,
它们的效果均比不上BM25。
## Reference
1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
2. https://github.com/wangyuxinwhy/uniem
3. https://github.com/CLUEbenchmark/SimCLUE
4. https://arxiv.org/abs/1612.00796
5. https://kexue.fm/archives/8847
6. https://huggingface.co/sensenova/piccolo-base-zh
7. https://kexue.fm/archives/7947
8. https://github.com/FlagOpen/FlagEmbedding
9. https://github.com/THUDM/LongBench