1.0.0 / README.md
indrajitharidas's picture
Model save
7f793d1 verified
|
raw
history blame
2.18 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - f1
  - precision
  - recall
model-index:
  - name: 1.0.0
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: initial_audio
          split: test
          args: initial_audio
        metrics:
          - name: F1
            type: f1
            value: 0.11428571428571428
          - name: Precision
            type: precision
            value: 0.6666666666666666
          - name: Recall
            type: recall
            value: 0.0625

1.0.0

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6934
  • F1: 0.1143
  • Precision: 0.6667
  • Recall: 0.0625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall
No log 1.0 2 0.6925 0.1176 1.0 0.0625
No log 2.0 4 0.6929 0.1081 0.4 0.0625
No log 3.0 6 0.6934 0.1143 0.6667 0.0625

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1