Luxembourgish adaptation of sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 further adapted to support Historical and Contemporary Luxembourgish. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for (cross-lingual) semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
This model is specialised to perform cross-lingual semantic search to and from Historical/Contemporary Luxembourgish. This model would be particularly useful for libraries and archives that want to perform semantic search and longitudinal studies within their collections.
This is an paraphrase-multilingual-mpnet-base-v2 model that was further adapted by (Michail et al., 2025)
Limitations
This model only supports inputs of up to 128 subtokens long.
We also release a model that performs better (7.5pp) on Historical Bitext Mining and natively supports long context (8192 subtokens). For most usecases we reccomend using histlux-gte-multilingual-base
However, this model exhibits superior performance (by 18pp) on the adversarial paraphrase discrimination task ParaLUX.
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- LB-EN (Historical, Modern)
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("impresso-project/histlux-paraphrase-multilingual-mpnet-base-v2")
# Run inference
sentences = [
'The cross-border workers should also receive more wages.',
"D'grenzarbechetr missten och me' lo'n kre'en.",
"De Néckel: Firun! Dât ass jo ailes, wèll 't get dach neischt un der Bréck gemâcht!",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
(see introducing paper) Historical Bitext Mining (Accuracy):
LB -> FR: 88.6
FR -> LB: 90.0
LB -> EN: 88.7
EN -> LB: 90.4
LB -> DE: 91.1
DE -> LB: 91.8
Contemporary LB (Accuracy):
ParaLUX: 80.5
SIB-200(LB): 59.4
Training Details
Training Dataset
LB-EN (Historical, Modern)
- Dataset: lb-en (mixed)
- Size: 40,000 training samples
- Columns:
english
,luxembourgish
, andlabel (teacher's en embeddings)
- Approximate statistics based on the first 1000 samples:
english luxembourgish label type string string list details - min: 4 tokens
- mean: 25.32 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 36.91 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english luxembourgish label A lesson for the next year
Eng le’er fir dat anert joer
[0.08891881257295609, 0.20895496010780334, -0.10672671347856522, -0.03302554786205292, 0.049002278596162796, ...]
On Easter, the Maquisards' northern section organizes their big spring ball in Willy Pintsch's hall at the station.
Op O'schteren organisieren d'Maquisard'eiii section Nord, hire gro'sse fre'joersbal am sali Willy Pintsch op der gare.
[-0.08668982982635498, -0.06969941407442093, -0.0036096556577831507, 0.1605304628610611, -0.041704729199409485, ...]
The happiness, the peace is long gone now,
V ergângen ass nu läng dat gléck, de' fréd,
[0.07229219377040863, 0.3288629353046417, -0.012548360042273998, 0.06720984727144241, -0.02617395855486393, ...]
- Loss:
MSELoss
Evaluation Dataset
Non-Default Hyperparameters
learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1bf16
: True- Rest are default
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Adapting Multilingual Embedding Models to Historical Luxembourgish (introducing paper)
@misc{michail2025adaptingmultilingualembeddingmodels,
title={Adapting Multilingual Embedding Models to Historical Luxembourgish},
author={Andrianos Michail and Corina Julia Raclé and Juri Opitz and Simon Clematide},
year={2025},
eprint={2502.07938},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.07938},
}
Multilingual Knowledge Distillation
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 9
Model tree for impresso-project/histlux-paraphrase-multilingual-mpnet-base-v2
Datasets used to train impresso-project/histlux-paraphrase-multilingual-mpnet-base-v2
Evaluation results
- SIB-200(LB) accuracy on Contemporary-lbself-reported0.594
- ParaLUX accuracy on Contemporary-lbself-reported0.805
- LB<->FR accuracy on LBHistoricalBitextMiningself-reported0.893
- LB<->EN accuracy on LBHistoricalBitextMiningself-reported0.895
- LB<->DE accuracy on LBHistoricalBitextMiningself-reported0.914