|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from torchvision import models |
|
from transformers import PreTrainedModel, PretrainedConfig |
|
from transformers.modeling_outputs import CausalLMOutput |
|
from .configuration_bytegpt import ByteGPTConfig |
|
|
|
try: |
|
from flash_attn.flash_attention import FlashAttention |
|
|
|
FLASH_ATTENTION_AVAILABLE = ( |
|
True and torch.cuda.is_available() |
|
) |
|
except ImportError: |
|
FLASH_ATTENTION_AVAILABLE = False |
|
|
|
|
|
class Head(nn.Module): |
|
"""One head of self-attention. |
|
|
|
Args: |
|
head_size (int): The size of the head. |
|
n_embd (int): The embedding dimension. |
|
block_size (int): The block size. |
|
dropout (float): The dropout rate. |
|
use_flash_attention (bool): Whether to use Flash Attention. |
|
|
|
Attributes: |
|
key (nn.Linear): The linear layer for computing the keys. |
|
query (nn.Linear): The linear layer for computing the queries. |
|
value (nn.Linear): The linear layer for computing the values. |
|
tril (torch.Tensor): The lower triangular matrix. |
|
dropout (nn.Dropout): The dropout layer. |
|
use_flash_attention (bool): Whether to use Flash Attention. |
|
flash_attention (FlashAttention): The FlashAttention module. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
head_size: int, |
|
n_embd: int, |
|
block_size: int, |
|
dropout: float, |
|
use_flash_attention: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.key = nn.Linear(n_embd, head_size, bias=False) |
|
self.query = nn.Linear(n_embd, head_size, bias=False) |
|
self.value = nn.Linear(n_embd, head_size, bias=False) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
self.use_flash_attention = use_flash_attention and FLASH_ATTENTION_AVAILABLE |
|
if self.use_flash_attention: |
|
print("Using Flash Attention") |
|
self.flash_attention = FlashAttention() |
|
else: |
|
if use_flash_attention: |
|
print( |
|
"Flash Attention requested but not available. Using standard attention." |
|
) |
|
self.tril = torch.tril(torch.ones(block_size, block_size)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Perform forward pass through the attention head. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
|
|
Returns: |
|
torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
""" |
|
B, T, C = x.shape |
|
k = self.key(x) |
|
q = self.query(x) |
|
v = self.value(x) |
|
|
|
if self.use_flash_attention: |
|
|
|
out = self.flash_attention(q.unsqueeze(1), k.unsqueeze(1), v.unsqueeze(1))[ |
|
0 |
|
].squeeze(1) |
|
else: |
|
|
|
self.tril = self.tril.to(x.device) |
|
wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5 |
|
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) |
|
wei = F.softmax(wei, dim=-1) |
|
wei = self.dropout(wei) |
|
out = wei @ v |
|
|
|
return out |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
"""Multiple heads of self-attention in parallel. |
|
|
|
Args: |
|
num_heads (int): The number of heads. |
|
head_size (int): The size of each head. |
|
n_embd (int): The embedding dimension. |
|
block_size (int): The block size. |
|
dropout (float): The dropout rate. |
|
use_flash_attention (bool): Whether to use Flash Attention. |
|
|
|
Attributes: |
|
heads (nn.Modulelist): The list of attention heads. |
|
proj (nn.Linear): The linear layer for projecting the concatenated heads. |
|
dropout (nn.Dropout): The dropout layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_heads: int, |
|
head_size: int, |
|
n_embd: int, |
|
block_size: int, |
|
dropout: float, |
|
use_flash_attention: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.heads = nn.ModuleList( |
|
[ |
|
Head( |
|
head_size, |
|
n_embd, |
|
block_size, |
|
dropout, |
|
use_flash_attention=use_flash_attention, |
|
) |
|
for _ in range(num_heads) |
|
] |
|
) |
|
self.proj = nn.Linear(n_embd, n_embd) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Perform forward pass through the multi-head attention layer. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
|
|
Returns: |
|
torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
""" |
|
out = torch.cat([h(x) for h in self.heads], dim=-1) |
|
out = self.dropout(self.proj(out)) |
|
return out |
|
|
|
|
|
class FeedForward(nn.Module): |
|
"""Simple linear layer followed by a non-linearity. |
|
|
|
Args: |
|
n_embd (int): The embedding dimension. |
|
dropout (float): The dropout rate. |
|
|
|
Attributes: |
|
net (nn.Sequential): The sequential network of linear layers and ReLU activation. |
|
""" |
|
|
|
def __init__(self, n_embd: int, dropout: float) -> None: |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(n_embd, 4 * n_embd), |
|
nn.ReLU(), |
|
nn.Linear(4 * n_embd, n_embd), |
|
nn.Dropout(dropout), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Perform forward pass through the feedforward layer. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
|
|
Returns: |
|
torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
""" |
|
return self.net(x) |
|
|
|
|
|
class Block(nn.Module): |
|
"""Transformer block: communication followed by computation. |
|
|
|
Args: |
|
n_embd (int): The embedding dimension. |
|
n_head (int): The number of attention heads. |
|
block_size (int): The block size. |
|
dropout (float): The dropout rate. |
|
use_flash_attention (bool): Whether to use Flash Attention. |
|
|
|
Attributes: |
|
sa (MultiHeadAttention): The multi-head attention layer. |
|
ffwd (FeedForward): The feedforward layer. |
|
ln1 (nn.LayerNorm): The layer normalization layer for the first sublayer. |
|
ln2 (nn.LayerNorm): The layer normalization layer for the second sublayer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_embd: int, |
|
n_head: int, |
|
block_size: int, |
|
dropout: float, |
|
use_flash_attention: bool = False, |
|
) -> None: |
|
super().__init__() |
|
head_size = n_embd // n_head |
|
self.sa = MultiHeadAttention( |
|
n_head, |
|
head_size, |
|
n_embd, |
|
block_size, |
|
dropout, |
|
use_flash_attention=use_flash_attention, |
|
) |
|
self.ffwd = FeedForward(n_embd, dropout) |
|
self.ln1 = nn.LayerNorm(n_embd) |
|
self.ln2 = nn.LayerNorm(n_embd) |
|
|
|
|
|
self.use_flash_attention = use_flash_attention and FLASH_ATTENTION_AVAILABLE |
|
if self.use_flash_attention: |
|
print("Using Flash Attention") |
|
elif use_flash_attention: |
|
print( |
|
"Flash Attention requested but not available. Using standard attention." |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Perform forward pass through the transformer block. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
|
|
Returns: |
|
torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). |
|
""" |
|
x = x + self.sa(self.ln1(x)) |
|
x = x + self.ffwd(self.ln2(x)) |
|
return x |
|
|
|
|
|
class ByteGPTForCausalLM(PreTrainedModel): |
|
config_class = ByteGPTConfig |
|
|
|
def __init__( |
|
self, |
|
config: ByteGPTConfig, |
|
): |
|
super().__init__(config) |
|
self.block_size = config.block_size |
|
self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.position_embedding_table = nn.Embedding(config.block_size, config.n_embd) |
|
self.blocks = nn.Sequential( |
|
*[ |
|
Block( |
|
config.n_embd, |
|
config.n_head, |
|
config.block_size, |
|
config.dropout, |
|
config.use_flash_attention, |
|
) |
|
for _ in range(config.n_layer) |
|
] |
|
) |
|
self.ln_f = nn.LayerNorm(config.n_embd) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
return_dict: bool = True, |
|
labels: torch.Tensor = None, |
|
**kwargs |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Forward pass of the model. |
|
|
|
Args: |
|
idx: Input tensor. |
|
targets: Target tensor. |
|
|
|
Returns: |
|
tuple of logits and loss. |
|
""" |
|
B, T = input_ids.shape |
|
|
|
|
|
tok_emb = self.token_embedding_table(input_ids) |
|
pos_emb = self.position_embedding_table( |
|
torch.arange(T, device=input_ids.device) |
|
) |
|
x = tok_emb + pos_emb |
|
|
|
|
|
x = self.blocks(x) |
|
x = self.ln_f(x) |
|
|
|
|
|
logits = self.lm_head(x) |
|
|
|
if labels is None: |
|
loss = None |
|
else: |
|
B, T, C = logits.shape |
|
logits = logits.view(B * T, C) |
|
labels = labels.view(B * T) |
|
loss = F.cross_entropy(logits, labels) |
|
|
|
if not return_dict: |
|
return (logits, loss) |
|
|
|
return CausalLMOutput(logits=logits, loss=loss) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs): |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": torch.ones_like(input_ids), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|