ijktech-jk commited on
Commit
d95f1d1
·
verified ·
1 Parent(s): 3b73ea4

Upload ByteGPT-small

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ByteGPTForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_bytegpt.ByteGPTConfig",
7
+ "AutoModelForCausalLM": "modeling_bytegpt.ByteGPTForCausalLM"
8
+ },
9
+ "block_size": 1024,
10
+ "dropout": 0.1,
11
+ "model_type": "ijk_byte_gpt",
12
+ "n_embd": 768,
13
+ "n_head": 12,
14
+ "n_layer": 12,
15
+ "torch_dtype": "float32",
16
+ "transformers_version": "4.48.2",
17
+ "use_flash_attention": false,
18
+ "vocab_size": 256
19
+ }
configuration_bytegpt.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ByteGPTConfig(PretrainedConfig):
5
+ model_type = "ijk_byte_gpt"
6
+
7
+ def __init__(
8
+ self,
9
+ vocab_size: int = 259,
10
+ block_size: int = 128,
11
+ n_embd: int = 64,
12
+ n_head: int = 4,
13
+ n_layer: int = 4,
14
+ dropout: float = 0.1,
15
+ use_flash_attention: bool = False,
16
+ _attn_implementation_autoset: bool = False,
17
+ **kwargs
18
+ ):
19
+ super().__init__(**kwargs)
20
+ self.auto_map = {
21
+ "AutoConfig": "configuration_bytegpt.ByteGPTConfig",
22
+ "AutoModelForCausalLM": "modeling_bytegpt.ByteGPTForCausalLM",
23
+ }
24
+ self.vocab_size = vocab_size
25
+ self.block_size = block_size
26
+ self.n_embd = n_embd
27
+ self.n_head = n_head
28
+ self.n_layer = n_layer
29
+ self.dropout = dropout
30
+ self.use_flash_attention = use_flash_attention
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.48.2"
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:158fa9d9c157e9e64ae65a338a78d81868eb98b86ad361531459f555cd3ccedf
3
+ size 344889712
modeling_bytegpt.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import functional as F
4
+ from torchvision import models
5
+ from transformers import PreTrainedModel, PretrainedConfig
6
+ from transformers.modeling_outputs import CausalLMOutput
7
+ from .configuration_bytegpt import ByteGPTConfig
8
+
9
+ try:
10
+ from flash_attn.flash_attention import FlashAttention
11
+
12
+ FLASH_ATTENTION_AVAILABLE = (
13
+ True and torch.cuda.is_available()
14
+ ) # Only available on CUDA
15
+ except ImportError:
16
+ FLASH_ATTENTION_AVAILABLE = False
17
+
18
+
19
+ class Head(nn.Module):
20
+ """One head of self-attention.
21
+
22
+ Args:
23
+ head_size (int): The size of the head.
24
+ n_embd (int): The embedding dimension.
25
+ block_size (int): The block size.
26
+ dropout (float): The dropout rate.
27
+ use_flash_attention (bool): Whether to use Flash Attention.
28
+
29
+ Attributes:
30
+ key (nn.Linear): The linear layer for computing the keys.
31
+ query (nn.Linear): The linear layer for computing the queries.
32
+ value (nn.Linear): The linear layer for computing the values.
33
+ tril (torch.Tensor): The lower triangular matrix.
34
+ dropout (nn.Dropout): The dropout layer.
35
+ use_flash_attention (bool): Whether to use Flash Attention.
36
+ flash_attention (FlashAttention): The FlashAttention module.
37
+ """
38
+
39
+ def __init__(
40
+ self,
41
+ head_size: int,
42
+ n_embd: int,
43
+ block_size: int,
44
+ dropout: float,
45
+ use_flash_attention: bool = False,
46
+ ) -> None:
47
+ super().__init__()
48
+ self.key = nn.Linear(n_embd, head_size, bias=False)
49
+ self.query = nn.Linear(n_embd, head_size, bias=False)
50
+ self.value = nn.Linear(n_embd, head_size, bias=False)
51
+ self.dropout = nn.Dropout(dropout)
52
+
53
+ # Only enable flash attention if we're on CUDA
54
+ self.use_flash_attention = use_flash_attention and FLASH_ATTENTION_AVAILABLE
55
+ if self.use_flash_attention:
56
+ print("Using Flash Attention")
57
+ self.flash_attention = FlashAttention()
58
+ else:
59
+ if use_flash_attention:
60
+ print(
61
+ "Flash Attention requested but not available. Using standard attention."
62
+ )
63
+ self.tril = torch.tril(torch.ones(block_size, block_size))
64
+
65
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
66
+ """Perform forward pass through the attention head.
67
+
68
+ Args:
69
+ x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension).
70
+
71
+ Returns:
72
+ torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension).
73
+ """
74
+ B, T, C = x.shape
75
+ k = self.key(x) # (B,T,head_size)
76
+ q = self.query(x) # (B,T,head_size)
77
+ v = self.value(x) # (B,T,head_size)
78
+
79
+ if self.use_flash_attention:
80
+ # Flash Attention expects shape (B, H, T, D)
81
+ out = self.flash_attention(q.unsqueeze(1), k.unsqueeze(1), v.unsqueeze(1))[
82
+ 0
83
+ ].squeeze(1)
84
+ else:
85
+ # Regular attention
86
+ self.tril = self.tril.to(x.device)
87
+ wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5 # (B, T, T)
88
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) # (B, T, T)
89
+ wei = F.softmax(wei, dim=-1) # (B, T, T)
90
+ wei = self.dropout(wei)
91
+ out = wei @ v # (B, T, head_size)
92
+
93
+ return out
94
+
95
+
96
+ class MultiHeadAttention(nn.Module):
97
+ """Multiple heads of self-attention in parallel.
98
+
99
+ Args:
100
+ num_heads (int): The number of heads.
101
+ head_size (int): The size of each head.
102
+ n_embd (int): The embedding dimension.
103
+ block_size (int): The block size.
104
+ dropout (float): The dropout rate.
105
+ use_flash_attention (bool): Whether to use Flash Attention.
106
+
107
+ Attributes:
108
+ heads (nn.Modulelist): The list of attention heads.
109
+ proj (nn.Linear): The linear layer for projecting the concatenated heads.
110
+ dropout (nn.Dropout): The dropout layer.
111
+ """
112
+
113
+ def __init__(
114
+ self,
115
+ num_heads: int,
116
+ head_size: int,
117
+ n_embd: int,
118
+ block_size: int,
119
+ dropout: float,
120
+ use_flash_attention: bool = False,
121
+ ) -> None:
122
+ super().__init__()
123
+ self.heads = nn.ModuleList(
124
+ [
125
+ Head(
126
+ head_size,
127
+ n_embd,
128
+ block_size,
129
+ dropout,
130
+ use_flash_attention=use_flash_attention,
131
+ )
132
+ for _ in range(num_heads)
133
+ ]
134
+ )
135
+ self.proj = nn.Linear(n_embd, n_embd)
136
+ self.dropout = nn.Dropout(dropout)
137
+
138
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
139
+ """Perform forward pass through the multi-head attention layer.
140
+
141
+ Args:
142
+ x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension).
143
+
144
+ Returns:
145
+ torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension).
146
+ """
147
+ out = torch.cat([h(x) for h in self.heads], dim=-1)
148
+ out = self.dropout(self.proj(out))
149
+ return out
150
+
151
+
152
+ class FeedForward(nn.Module):
153
+ """Simple linear layer followed by a non-linearity.
154
+
155
+ Args:
156
+ n_embd (int): The embedding dimension.
157
+ dropout (float): The dropout rate.
158
+
159
+ Attributes:
160
+ net (nn.Sequential): The sequential network of linear layers and ReLU activation.
161
+ """
162
+
163
+ def __init__(self, n_embd: int, dropout: float) -> None:
164
+ super().__init__()
165
+ self.net = nn.Sequential(
166
+ nn.Linear(n_embd, 4 * n_embd),
167
+ nn.ReLU(),
168
+ nn.Linear(4 * n_embd, n_embd),
169
+ nn.Dropout(dropout),
170
+ )
171
+
172
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
173
+ """Perform forward pass through the feedforward layer.
174
+
175
+ Args:
176
+ x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension).
177
+
178
+ Returns:
179
+ torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension).
180
+ """
181
+ return self.net(x)
182
+
183
+
184
+ class Block(nn.Module):
185
+ """Transformer block: communication followed by computation.
186
+
187
+ Args:
188
+ n_embd (int): The embedding dimension.
189
+ n_head (int): The number of attention heads.
190
+ block_size (int): The block size.
191
+ dropout (float): The dropout rate.
192
+ use_flash_attention (bool): Whether to use Flash Attention.
193
+
194
+ Attributes:
195
+ sa (MultiHeadAttention): The multi-head attention layer.
196
+ ffwd (FeedForward): The feedforward layer.
197
+ ln1 (nn.LayerNorm): The layer normalization layer for the first sublayer.
198
+ ln2 (nn.LayerNorm): The layer normalization layer for the second sublayer.
199
+ """
200
+
201
+ def __init__(
202
+ self,
203
+ n_embd: int,
204
+ n_head: int,
205
+ block_size: int,
206
+ dropout: float,
207
+ use_flash_attention: bool = False,
208
+ ) -> None:
209
+ super().__init__()
210
+ head_size = n_embd // n_head
211
+ self.sa = MultiHeadAttention(
212
+ n_head,
213
+ head_size,
214
+ n_embd,
215
+ block_size,
216
+ dropout,
217
+ use_flash_attention=use_flash_attention,
218
+ )
219
+ self.ffwd = FeedForward(n_embd, dropout)
220
+ self.ln1 = nn.LayerNorm(n_embd)
221
+ self.ln2 = nn.LayerNorm(n_embd)
222
+
223
+ # Remove duplicate flash attention and tril setup since it's handled in Head class
224
+ self.use_flash_attention = use_flash_attention and FLASH_ATTENTION_AVAILABLE
225
+ if self.use_flash_attention:
226
+ print("Using Flash Attention")
227
+ elif use_flash_attention:
228
+ print(
229
+ "Flash Attention requested but not available. Using standard attention."
230
+ )
231
+
232
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
233
+ """Perform forward pass through the transformer block.
234
+
235
+ Args:
236
+ x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension).
237
+
238
+ Returns:
239
+ torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension).
240
+ """
241
+ x = x + self.sa(self.ln1(x))
242
+ x = x + self.ffwd(self.ln2(x))
243
+ return x
244
+
245
+
246
+ class ByteGPTForCausalLM(PreTrainedModel):
247
+ config_class = ByteGPTConfig
248
+
249
+ def __init__(
250
+ self,
251
+ config: ByteGPTConfig,
252
+ ):
253
+ super().__init__(config)
254
+ self.block_size = config.block_size
255
+ self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embd)
256
+ self.position_embedding_table = nn.Embedding(config.block_size, config.n_embd)
257
+ self.blocks = nn.Sequential(
258
+ *[
259
+ Block(
260
+ config.n_embd,
261
+ config.n_head,
262
+ config.block_size,
263
+ config.dropout,
264
+ config.use_flash_attention,
265
+ )
266
+ for _ in range(config.n_layer)
267
+ ]
268
+ )
269
+ self.ln_f = nn.LayerNorm(config.n_embd)
270
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
271
+
272
+ def forward(
273
+ self,
274
+ input_ids: torch.Tensor,
275
+ attention_mask: torch.Tensor,
276
+ return_dict: bool = True,
277
+ labels: torch.Tensor = None,
278
+ **kwargs
279
+ ) -> tuple[torch.Tensor, torch.Tensor]:
280
+ """
281
+ Forward pass of the model.
282
+
283
+ Args:
284
+ idx: Input tensor.
285
+ targets: Target tensor.
286
+
287
+ Returns:
288
+ tuple of logits and loss.
289
+ """
290
+ B, T = input_ids.shape
291
+
292
+ # Token and position embeddings
293
+ tok_emb = self.token_embedding_table(input_ids) # (B,T,C)
294
+ pos_emb = self.position_embedding_table(
295
+ torch.arange(T, device=input_ids.device)
296
+ ) # (T,C)
297
+ x = tok_emb + pos_emb # (B,T,C)
298
+
299
+ # Transformer blocks
300
+ x = self.blocks(x) # (B,T,C)
301
+ x = self.ln_f(x) # (B,T,C)
302
+
303
+ # Language model head
304
+ logits = self.lm_head(x) # (B,T,vocab_size)
305
+
306
+ if labels is None:
307
+ loss = None
308
+ else:
309
+ B, T, C = logits.shape
310
+ logits = logits.view(B * T, C)
311
+ labels = labels.view(B * T)
312
+ loss = F.cross_entropy(logits, labels)
313
+
314
+ if not return_dict:
315
+ return (logits, loss)
316
+
317
+ return CausalLMOutput(logits=logits, loss=loss)
318
+
319
+ def prepare_inputs_for_generation(self, input_ids, **kwargs):
320
+ # Required for .generate() to work
321
+ return {
322
+ "input_ids": input_ids,
323
+ "attention_mask": torch.ones_like(input_ids),
324
+ }
325
+
326
+ # def generate(
327
+ # self, input_ids: torch.Tensor, max_new_tokens: int, temperature: float = 1.0
328
+ # ) -> torch.Tensor:
329
+ # """
330
+ # Generate text tokens autoregressively.
331
+
332
+ # Args:
333
+ # idx: Context tokens
334
+ # max_new_tokens: Number of tokens to generate
335
+ # temperature: Sampling temperature (higher = more random)
336
+
337
+ # Returns:
338
+ # Generated token sequence
339
+ # """
340
+ # for _ in range(max_new_tokens):
341
+ # # Crop context if needed
342
+ # idx_cond = input_ids[:, -self.block_size :]
343
+ # # Get predictions
344
+ # logits, _ = self(idx_cond)
345
+ # # Focus only on the last time step
346
+ # logits = logits[:, -1, :] / temperature
347
+ # # Apply softmax to get probabilities
348
+ # probs = F.softmax(logits, dim=-1)
349
+ # # Sample from the distribution
350
+ # idx_next = torch.multinomial(probs, num_samples=1)
351
+ # # Append sampled index to the running sequence
352
+ # idx = torch.cat((idx, idx_next), dim=1)
353
+ # return idx