library_name: transformers
tags:
- gpt
- byte-tokenization
- mobile
- embedded
- onnx
license: cc-by-nc-4.0
datasets:
- custom
- web
language: en
widget:
- text: In order to make pancakes, you need to
- text: Once upon a time
IJK Technology β ByteGPT-small
ByteGPT-small is a small GPT-style language model trained using byte tokenization inspired by the ByT5 paper. It is designed for use on compute- and memory-constrained devices, such as mobile phones and embedded systems.
π Overview
- Model Type: GPT-style causal language model
- Tokenizer: Byte-level tokenization (from ByT5)
- Intended Use: Edge devices, mobile phones, embedded systems
- Size: Small (initial prototype)
- Training: Custom-trained from scratch
π§ Why Byte Tokenization?
Byte tokenization offers several advantages for small-scale, efficient models:
Reduced Memory Footprint:
Byte-level tokenization drastically reduces the size of the embedding layer, making the model suitable for devices with limited RAM.No External Dependencies:
Unlike subword tokenizers (e.g., SentencePiece, BPE), byte tokenization requires no external libraries for tokenization. A simple Python script can handle tokenization.Robustness to Noise:
Byte-level models are more robust to misspellings, typos, and out-of-vocabulary tokens.
π‘ Future Plans
This is the first in a series of models. While this model is not yet highly useful due to its small size, it represents the foundation for future versions. Upcoming releases will include:
- Larger Models: Scaled-up versions with better performance
- Distilled Models: Using GPRO distillation to create highly efficient small models
- Benchmark Results: Comparative performance on mobile devices
π» Usage
Quick Start (with transformers
):
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ijktech/ByteGPT-small", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ijktech/ByteGPT-small")
input_text = "What is the capital of France?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Tokenizer
The tokenizer is byte-level, compatible with AutoTokenizer from Hugging Face:
tokenizer = AutoTokenizer.from_pretrained("ijktech/ByteGPT-small")
ONNX
The model is also available in ONNX format, and can be used with the ONNX Runtime:
import onnxruntime as ort
import numpy as np
# Create ONNX Runtime session
ort_session = ort.InferenceSession("model.onnx")
# Helper function to generate text using the ONNX model
def generate_with_onnx(prompt_ids, max_new_tokens=50, temperature=1.0):
input_ids = prompt_ids.clone()
for _ in range(max_new_tokens):
# Get the last block_size tokens if input is too long
if input_ids.shape[1] > model.block_size:
input_ids = input_ids[:, -model.block_size:]
# Run inference
ort_inputs = {
'input': input_ids.cpu().numpy()
}
logits = ort_session.run(None, ort_inputs)[0]
# Get predictions for the next token
logits = torch.from_numpy(logits)
logits = logits[:, -1, :] # Only take the last token's predictions
# Apply temperature
if temperature != 1.0:
logits = logits / temperature
# Sample from the distribution
probs = torch.nn.functional.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Append the new token
input_ids = torch.cat([input_ids, next_token], dim=1)
return input_ids
# Test the generation
prompt = "Hello"
prompt_ids = tok(prompt, return_tensors="pt")["input_ids"]
generated_ids = generate_with_onnx(prompt_ids)
generated_text = tok.decode(generated_ids[0], skip_special_tokens=True)
print(f"Generated text: {generated_text}")
#Generated text: Hello everyone!
#A dinner is only available for St. Loui
π License
π CC-BY-NC-4.0: Free for non-commercial use.
πΌ Commercial Use: Contact IJK Technology Ltd for licensing at [email protected].
π οΈ About IJK Technology Ltd
IJK Technology Ltd (IJKTech) develops innovative machine learning models optimized for on-device inference. Our focus is on efficiency, privacy, and usability across mobile and embedded platforms.