|
# wav2vec2-large-xlsr-galician |
|
--- |
|
language: gl |
|
datasets: |
|
- OpenSLR 77 |
|
- mozilla-foundation common_voice_8_0 |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: Galician wav2vec2-large-xlsr-galician |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset_1: |
|
name: OpenSLR |
|
type: openslr |
|
args: gl |
|
dataset_2: |
|
name: mozilla-foundation |
|
type: common voice |
|
args: gl |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 7.12 |
|
--- |
|
|
|
# Model |
|
|
|
Fine-tuned model for Galician language |
|
|
|
Based on the [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) self-supervised model |
|
Fine-tune with audio labelled from [OpenSLR](https://openslr.org/77/) and Mozilla [Common_Voice](https://commonvoice.mozilla.org/gl) (both datasets previously refined) |
|
|
|
Check training metrics to see results |
|
|
|
# Testing |
|
|
|
Make sure that the audio speech input is sampled at 16kHz (mono). |
|
|
|
|
|
```python |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("ifrz/wav2vec2-large-xlsr-galician") |
|
processor = Wav2Vec2Processor.from_pretrained("ifrz/wav2vec2-large-xlsr-galician") |
|
|
|
# Reading taken audio clip |
|
import librosa, torch |
|
audio, rate = librosa.load("./gl_test_1.wav", sr = 16000) |
|
|
|
# Taking an input value |
|
input_values = processor(audio, sampling_rate=16_000, return_tensors = "pt", padding="longest").input_values |
|
# Storing logits (non-normalized prediction values) |
|
logits = model(input_values).logits |
|
# Storing predicted ids |
|
prediction = torch.argmax(logits, dim = -1) |
|
|
|
# Passing the prediction to the tokenzer decode to get the transcription |
|
transcription = processor.batch_decode(prediction)[0] |
|
print(transcription) |
|
``` |