ifrz's picture
Update README.md
0e2118b
|
raw
history blame
1.85 kB
# wav2vec2-large-xlsr-galician
---
language: gl
datasets:
- OpenSLR 77
- mozilla-foundation common_voice_8_0
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Galician wav2vec2-large-xlsr-galician
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset_1:
name: OpenSLR
type: openslr
args: gl
dataset_2:
name: mozilla-foundation
type: common voice
args: gl
metrics:
- name: Test WER
type: wer
value: 7.12
---
# Model
Fine-tuned model for Galician language
Based on the [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) self-supervised model
Fine-tune with audio labelled from [OpenSLR](https://openslr.org/77/) and Mozilla [Common_Voice](https://commonvoice.mozilla.org/gl) (both datasets previously refined)
Check training metrics to see results
# Testing
Make sure that the audio speech input is sampled at 16kHz (mono).
```python
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
model = Wav2Vec2ForCTC.from_pretrained("ifrz/wav2vec2-large-xlsr-galician")
processor = Wav2Vec2Processor.from_pretrained("ifrz/wav2vec2-large-xlsr-galician")
# Reading taken audio clip
import librosa, torch
audio, rate = librosa.load("./gl_test_1.wav", sr = 16000)
# Taking an input value
input_values = processor(audio, sampling_rate=16_000, return_tensors = "pt", padding="longest").input_values
# Storing logits (non-normalized prediction values)
logits = model(input_values).logits
# Storing predicted ids
prediction = torch.argmax(logits, dim = -1)
# Passing the prediction to the tokenzer decode to get the transcription
transcription = processor.batch_decode(prediction)[0]
print(transcription)
```