license: mit
Usage
Code example
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of Japan?",
"Kyoto",
"Tokyo",
"Beijing"
]
tokenizer = AutoTokenizer.from_pretrained("iamgroot42/rover_nexus")
model = AutoModel.from_pretrained("iamgroot42/rover_nexus")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
Use with sentence-transformers:
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a sad person']
model = SentenceTransformer('iamgroot42/rover_nexus')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
Model training details and data will be uploaded soon!
- Downloads last month
- 329
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported95.776
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported93.823
- f1_weighted on MTEB AmazonCounterfactualClassification (en)test set self-reported95.937
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported82.636
- ap_weighted on MTEB AmazonCounterfactualClassification (en)test set self-reported82.636
- main_score on MTEB AmazonCounterfactualClassification (en)test set self-reported95.776
- accuracy on MTEB AmazonPolarityClassification (default)test set self-reported97.714
- f1 on MTEB AmazonPolarityClassification (default)test set self-reported97.714
- f1_weighted on MTEB AmazonPolarityClassification (default)test set self-reported97.714
- ap on MTEB AmazonPolarityClassification (default)test set self-reported96.536