huyai123 commited on
Commit
7754b09
·
verified ·
1 Parent(s): ea54d45

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +7 -7
handler.py CHANGED
@@ -7,17 +7,17 @@ from diffusers.pipelines import FluxControlNetPipeline
7
  from io import BytesIO
8
 
9
  class EndpointHandler:
10
- def __init__(self, model_dir="huy Ai123/Flux.1dev-Image-Upscaler"):
11
  # Access the environment variable
12
  HUGGINGFACE_API_TOKEN = os.getenv('HUGGINGFACE_API_TOKEN')
13
  if not HUGGINGFACE_API_TOKEN:
14
- raise ValueError("HUGGINGFACE_API_TOKEN")
15
 
16
  # Load model and pipeline
17
- self.controlnet = FluxControlNetModel.From_Pretrained(
18
  model_dir, torch_dtype=torch.bfloat16, use_auth_token=HUGGINGFACE_API_TOKEN
19
  )
20
- self.pipe = FluxControlNetPipeline.From_Pretrained(
21
  "black-forest-labs/FLUX.1-dev",
22
  controlnet=self.controlnet,
23
  torch_dtype=torch.bfloat16,
@@ -35,7 +35,7 @@ class EndpointHandler:
35
  # Upscale x4
36
  return image.resize((w * 4, h * 4))
37
 
38
- def post_process(self, output):
39
  # Save output image to a file-like object
40
  buffer = BytesIO()
41
  output.save(buffer, format="PNG")
@@ -49,9 +49,9 @@ class EndpointHandler:
49
  output_image = self.pipe(
50
  prompt=data.get("prompt", ""),
51
  control_image=control_image,
52
- controlnet Conditioning_scale=0.6,
53
  num_inference_steps=28,
54
- height=control_image.Size[1],
55
  width=control_image.size[0],
56
  ).images[0]
57
  # Postprocess output
 
7
  from io import BytesIO
8
 
9
  class EndpointHandler:
10
+ def __init__(self, model_dir="huyai123/Flux.1-dev-Image-Upscaler"):
11
  # Access the environment variable
12
  HUGGINGFACE_API_TOKEN = os.getenv('HUGGINGFACE_API_TOKEN')
13
  if not HUGGINGFACE_API_TOKEN:
14
+ raise ValueError("HUGGINGFACE_API_TOKEN environment variable is not set")
15
 
16
  # Load model and pipeline
17
+ self.controlnet = FluxControlNetModel.from_pretrained(
18
  model_dir, torch_dtype=torch.bfloat16, use_auth_token=HUGGINGFACE_API_TOKEN
19
  )
20
+ self.pipe = FluxControlNetPipeline.from_pretrained(
21
  "black-forest-labs/FLUX.1-dev",
22
  controlnet=self.controlnet,
23
  torch_dtype=torch.bfloat16,
 
35
  # Upscale x4
36
  return image.resize((w * 4, h * 4))
37
 
38
+ def postprocess(self, output):
39
  # Save output image to a file-like object
40
  buffer = BytesIO()
41
  output.save(buffer, format="PNG")
 
49
  output_image = self.pipe(
50
  prompt=data.get("prompt", ""),
51
  control_image=control_image,
52
+ controlnet_conditioning_scale=0.6,
53
  num_inference_steps=28,
54
+ height=control_image.size[1],
55
  width=control_image.size[0],
56
  ).images[0]
57
  # Postprocess output