huyai123 commited on
Commit
ea54d45
·
verified ·
1 Parent(s): 906db1e

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +16 -8
handler.py CHANGED
@@ -1,19 +1,27 @@
 
1
  import torch
 
2
  from diffusers.utils import load_image
3
  from diffusers import FluxControlNetModel
4
  from diffusers.pipelines import FluxControlNetPipeline
5
  from io import BytesIO
6
 
7
  class EndpointHandler:
8
- def __init__(self, model_dir="huyai123/Flux.1-dev-Image-Upscaler"):
 
 
 
 
 
9
  # Load model and pipeline
10
- self.controlnet = FluxControlNetModel.from_pretrained(
11
- model_dir, torch_dtype=torch.bfloat16
12
  )
13
- self.pipe = FluxControlNetPipeline.from_pretrained(
14
  "black-forest-labs/FLUX.1-dev",
15
  controlnet=self.controlnet,
16
- torch_dtype=torch.bfloat16
 
17
  )
18
  self.pipe.to("cuda")
19
 
@@ -27,7 +35,7 @@ class EndpointHandler:
27
  # Upscale x4
28
  return image.resize((w * 4, h * 4))
29
 
30
- def postprocess(self, output):
31
  # Save output image to a file-like object
32
  buffer = BytesIO()
33
  output.save(buffer, format="PNG")
@@ -41,9 +49,9 @@ class EndpointHandler:
41
  output_image = self.pipe(
42
  prompt=data.get("prompt", ""),
43
  control_image=control_image,
44
- controlnet_conditioning_scale=0.6,
45
  num_inference_steps=28,
46
- height=control_image.size[1],
47
  width=control_image.size[0],
48
  ).images[0]
49
  # Postprocess output
 
1
+ import os
2
  import torch
3
+ from PIL import Image
4
  from diffusers.utils import load_image
5
  from diffusers import FluxControlNetModel
6
  from diffusers.pipelines import FluxControlNetPipeline
7
  from io import BytesIO
8
 
9
  class EndpointHandler:
10
+ def __init__(self, model_dir="huy Ai123/Flux.1dev-Image-Upscaler"):
11
+ # Access the environment variable
12
+ HUGGINGFACE_API_TOKEN = os.getenv('HUGGINGFACE_API_TOKEN')
13
+ if not HUGGINGFACE_API_TOKEN:
14
+ raise ValueError("HUGGINGFACE_API_TOKEN")
15
+
16
  # Load model and pipeline
17
+ self.controlnet = FluxControlNetModel.From_Pretrained(
18
+ model_dir, torch_dtype=torch.bfloat16, use_auth_token=HUGGINGFACE_API_TOKEN
19
  )
20
+ self.pipe = FluxControlNetPipeline.From_Pretrained(
21
  "black-forest-labs/FLUX.1-dev",
22
  controlnet=self.controlnet,
23
+ torch_dtype=torch.bfloat16,
24
+ use_auth_token=HUGGINGFACE_API_TOKEN
25
  )
26
  self.pipe.to("cuda")
27
 
 
35
  # Upscale x4
36
  return image.resize((w * 4, h * 4))
37
 
38
+ def post_process(self, output):
39
  # Save output image to a file-like object
40
  buffer = BytesIO()
41
  output.save(buffer, format="PNG")
 
49
  output_image = self.pipe(
50
  prompt=data.get("prompt", ""),
51
  control_image=control_image,
52
+ controlnet Conditioning_scale=0.6,
53
  num_inference_steps=28,
54
+ height=control_image.Size[1],
55
  width=control_image.size[0],
56
  ).images[0]
57
  # Postprocess output