Update handler.py
Browse files- handler.py +16 -8
handler.py
CHANGED
|
@@ -1,19 +1,27 @@
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from diffusers.utils import load_image
|
| 3 |
from diffusers import FluxControlNetModel
|
| 4 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 5 |
from io import BytesIO
|
| 6 |
|
| 7 |
class EndpointHandler:
|
| 8 |
-
def __init__(self, model_dir="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Load model and pipeline
|
| 10 |
-
self.controlnet = FluxControlNetModel.
|
| 11 |
-
model_dir, torch_dtype=torch.bfloat16
|
| 12 |
)
|
| 13 |
-
self.pipe = FluxControlNetPipeline.
|
| 14 |
"black-forest-labs/FLUX.1-dev",
|
| 15 |
controlnet=self.controlnet,
|
| 16 |
-
torch_dtype=torch.bfloat16
|
|
|
|
| 17 |
)
|
| 18 |
self.pipe.to("cuda")
|
| 19 |
|
|
@@ -27,7 +35,7 @@ class EndpointHandler:
|
|
| 27 |
# Upscale x4
|
| 28 |
return image.resize((w * 4, h * 4))
|
| 29 |
|
| 30 |
-
def
|
| 31 |
# Save output image to a file-like object
|
| 32 |
buffer = BytesIO()
|
| 33 |
output.save(buffer, format="PNG")
|
|
@@ -41,9 +49,9 @@ class EndpointHandler:
|
|
| 41 |
output_image = self.pipe(
|
| 42 |
prompt=data.get("prompt", ""),
|
| 43 |
control_image=control_image,
|
| 44 |
-
|
| 45 |
num_inference_steps=28,
|
| 46 |
-
height=control_image.
|
| 47 |
width=control_image.size[0],
|
| 48 |
).images[0]
|
| 49 |
# Postprocess output
|
|
|
|
| 1 |
+
import os
|
| 2 |
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
from diffusers.utils import load_image
|
| 5 |
from diffusers import FluxControlNetModel
|
| 6 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 7 |
from io import BytesIO
|
| 8 |
|
| 9 |
class EndpointHandler:
|
| 10 |
+
def __init__(self, model_dir="huy Ai123/Flux.1dev-Image-Upscaler"):
|
| 11 |
+
# Access the environment variable
|
| 12 |
+
HUGGINGFACE_API_TOKEN = os.getenv('HUGGINGFACE_API_TOKEN')
|
| 13 |
+
if not HUGGINGFACE_API_TOKEN:
|
| 14 |
+
raise ValueError("HUGGINGFACE_API_TOKEN")
|
| 15 |
+
|
| 16 |
# Load model and pipeline
|
| 17 |
+
self.controlnet = FluxControlNetModel.From_Pretrained(
|
| 18 |
+
model_dir, torch_dtype=torch.bfloat16, use_auth_token=HUGGINGFACE_API_TOKEN
|
| 19 |
)
|
| 20 |
+
self.pipe = FluxControlNetPipeline.From_Pretrained(
|
| 21 |
"black-forest-labs/FLUX.1-dev",
|
| 22 |
controlnet=self.controlnet,
|
| 23 |
+
torch_dtype=torch.bfloat16,
|
| 24 |
+
use_auth_token=HUGGINGFACE_API_TOKEN
|
| 25 |
)
|
| 26 |
self.pipe.to("cuda")
|
| 27 |
|
|
|
|
| 35 |
# Upscale x4
|
| 36 |
return image.resize((w * 4, h * 4))
|
| 37 |
|
| 38 |
+
def post_process(self, output):
|
| 39 |
# Save output image to a file-like object
|
| 40 |
buffer = BytesIO()
|
| 41 |
output.save(buffer, format="PNG")
|
|
|
|
| 49 |
output_image = self.pipe(
|
| 50 |
prompt=data.get("prompt", ""),
|
| 51 |
control_image=control_image,
|
| 52 |
+
controlnet Conditioning_scale=0.6,
|
| 53 |
num_inference_steps=28,
|
| 54 |
+
height=control_image.Size[1],
|
| 55 |
width=control_image.size[0],
|
| 56 |
).images[0]
|
| 57 |
# Postprocess output
|