dots.llm1.inst / README.md
huihui-ai's picture
Update README.md
7737d4d verified
---
license: mit
license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE
pipeline_tag: text-generation
base_model: rednote-hilab/dots.llm1.inst
tags:
- chat
library_name: transformers
language:
- en
- zh
---
# huihui-ai/dots.llm1.inst
This version only allows local loading of [rednote-hilab/dots.llm1.inst](https://huggingface.co/rednote-hilab/dots.llm1.inst) using transformers, with only the local import issue modified and no other changes.
## Usage
Copy the four files to the model directory, and then you can use the following program.
```
import sys
import os
import torch
from transformers import AutoTokenizer, AutoConfig, AutoModel, BitsAndBytesConfig
MODEL_ID = "./rednote-hilab/dots.llm1.inst"
sys.path.append(os.path.abspath(MODEL_ID))
from configuration_dots1 import Dots1Config
from modeling_dots1 import Dots1ForCausalLM
AutoConfig.register("dots1", Dots1Config)
AutoModel.register(Dots1Config, Dots1ForCausalLM)
config = AutoConfig.from_pretrained(MODEL_ID)
print(config)
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = Dots1ForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
trust_remote_code=True,
quantization_config=quant_config_4,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
print(model)
print(model.config)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```