metadata
license: other
license_name: inf
license_link: >-
https://huggingface.co/huihui-ai/OpenCoder-8B-Instruct-abliterated/blob/main/LICENSE
language:
- en
- zh
base_model:
- infly/OpenCoder-8B-Instruct
pipeline_tag: text-generation
library_name: transformers
datasets:
- OpenCoder-LLM/opencoder-sft-stage1
- OpenCoder-LLM/opencoder-sft-stage2
tags:
- abliterated
- uncensored
huihui-ai/OpenCoder-8B-Instruct-abliterated
This is an uncensored version of infly/OpenCoder-8B-Instruct created with abliteration (see remove-refusals-with-transformers to know more about it).
If the desired result is not achieved, you can clear the conversation and try again.
Inference with Huggingface's Transformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "infly/OpenCoder-8B-Instruct-abliterated"
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False)
result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
print(result)