RLAIF-V-L0-q0_25_preference

This model is a fine-tuned version of llava-hf/llava-v1.6-mistral-7b-hf on the RLAIF-V-L0-q0_25_preference dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5525
  • Rewards/chosen: -2.5933
  • Rewards/rejected: -4.2536
  • Rewards/accuracies: 0.7344
  • Rewards/margins: 1.6603
  • Logps/rejected: -203.2228
  • Logps/chosen: -183.7414
  • Logits/rejected: -2.2176
  • Logits/chosen: -2.2545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5342 0.6944 50 0.5209 -0.2071 -0.9491 0.7148 0.7420 -170.1774 -159.8791 -2.4678 -2.4995
0.217 1.3889 100 0.5167 -1.1670 -2.3865 0.7070 1.2195 -184.5513 -169.4779 -2.4044 -2.4350
0.105 2.0833 150 0.5275 -2.3365 -3.9689 0.7383 1.6324 -200.3754 -181.1734 -2.1635 -2.2023
0.0911 2.7778 200 0.5503 -2.5532 -4.2135 0.7227 1.6603 -202.8217 -183.3405 -2.2203 -2.2570

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.3
Downloads last month
14
Safetensors
Model size
7.57B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for htlou/mm-interp-RLAIF-V-L0-q0_25_preference

Finetuned
(166)
this model