RLAIF-V-Cosi-q0_25_preference

This model is a fine-tuned version of llava-hf/llava-v1.6-mistral-7b-hf on the RLAIF-V-Cosi-q0_25_preference dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5909
  • Rewards/chosen: -2.7988
  • Rewards/rejected: -4.2628
  • Rewards/accuracies: 0.7266
  • Rewards/margins: 1.4639
  • Logps/rejected: -211.2034
  • Logps/chosen: -194.0678
  • Logits/rejected: -2.6060
  • Logits/chosen: -2.6047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.575 0.6944 50 0.5680 -0.5232 -1.1499 0.6914 0.6267 -180.0744 -171.3114 -2.7966 -2.7982
0.2161 1.3889 100 0.5416 -1.1269 -2.2892 0.7461 1.1623 -191.4681 -177.3486 -2.6708 -2.6714
0.0912 2.0833 150 0.5559 -2.1342 -3.5698 0.7188 1.4356 -204.2739 -187.4216 -2.6701 -2.6674
0.0828 2.7778 200 0.5902 -2.7717 -4.2295 0.7227 1.4578 -210.8705 -193.7959 -2.6071 -2.6057

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.3
Downloads last month
8
Safetensors
Model size
7.57B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for htlou/mm-interp-RLAIF-V-Cosi-q0_25_preference

Finetuned
(166)
this model