Compcap_cooccur_0_100
This model is a fine-tuned version of llava-hf/llava-v1.6-mistral-7b-hf on the Compcap_cooccur_0_100 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7824
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9444 | 0.1354 | 50 | 0.9377 |
0.8668 | 0.2708 | 100 | 0.8816 |
0.8436 | 0.4062 | 150 | 0.8559 |
0.8192 | 0.5416 | 200 | 0.8384 |
0.8285 | 0.6770 | 250 | 0.8261 |
0.8132 | 0.8125 | 300 | 0.8165 |
0.7997 | 0.9479 | 350 | 0.8076 |
0.7335 | 1.0833 | 400 | 0.8050 |
0.7466 | 1.2187 | 450 | 0.7997 |
0.7264 | 1.3541 | 500 | 0.7957 |
0.7286 | 1.4895 | 550 | 0.7911 |
0.7251 | 1.6249 | 600 | 0.7876 |
0.727 | 1.7603 | 650 | 0.7840 |
0.7277 | 1.8957 | 700 | 0.7811 |
0.6724 | 2.0311 | 750 | 0.7858 |
0.6883 | 2.1666 | 800 | 0.7850 |
0.6709 | 2.3020 | 850 | 0.7840 |
0.6598 | 2.4374 | 900 | 0.7834 |
0.674 | 2.5728 | 950 | 0.7830 |
0.656 | 2.7082 | 1000 | 0.7828 |
0.6741 | 2.8436 | 1050 | 0.7825 |
0.6592 | 2.9790 | 1100 | 0.7824 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for htlou/backup_0202_llamafactory_Compcap_cooccur_0_100-llava-mistral
Base model
llava-hf/llava-v1.6-mistral-7b-hf