hotchpotch's picture
Update README.md
a084600 verified
---
license: mit
---
Converted [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) model (dense retriever only) in onnx fp16/int8 format for use with [Vespa Embedding](https://docs.vespa.ai/en/embedding.html).
- BAAI-bge-m3_fp16.onnx (fp16)
- BAAI-bge-m3_quantized.onnx (int8 quantized)
The model was quantized using the [optimum](https://github.com/huggingface/optimum) toolkit.
## Example of vespa services.xml:
**Notice**: FP16 works well with Vespa versions `8.325.46` and above.
```xml
<component id="bge_m3" type="hugging-face-embedder">
<transformer-model
url="https://huggingface.co/hotchpotch/vespa-onnx-BAAI-bge-m3-only-dense/resolve/main/BAAI-bge-m3_fp16.onnx" />
<!-- or int8 quantization model
<transformer-model
url="https://huggingface.co/hotchpotch/vespa-onnx-BAAI-bge-m3-only-dense/resolve/main/BAAI-bge-m3_quantized.onnx"
/>
-->
<tokenizer-model
url="https://huggingface.co/hotchpotch/vespa-onnx-BAAI-bge-m3-only-dense/resolve/main/tokenizer.json" />
<normalize>true</normalize>
<pooling-strategy>cls</pooling-strategy>
</component>
```
### deploy
```
# FP16 model has a larger file size, which can result in longer deployment times.
vespa deploy --wait 1800 .
```
## Tips: conver to int8 quantized
```
# https://github.com/vespa-engine/sample-apps/blob/master/simple-semantic-search/export_hf_model_from_hf.py
./export_hf_model_from_hf.py --hf_model BAAI/bge-m3 --output_dir bge-m3
```
```
optimum-cli onnxruntime quantize --onnx_model ./bge-m3 -o bge-m3-large_quantized --avx512_vnni
```
## Tips: convert to fp16
```
# https://github.com/vespa-engine/sample-apps/blob/master/simple-semantic-search/export_hf_model_from_hf.py
./export_hf_model_from_hf.py --hf_model BAAI/bge-m3 --output_dir bge-m3
```
- https://gist.github.com/hotchpotch/64fa52d32886fe61cc1d110066afef38
```
# https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/float16.py
import onnx
from onnxruntime.transformers.float16 import convert_float_to_float16
onnx_model = onnx.load("bge-m3/BAAI-bge-m3.onnx")
model_fp16 = convert_float_to_float16(onnx_model, disable_shape_infer=True)
onnx.save(model_fp16, "bge-m3/BAAI-bge-m3_fp16.onnx")
```
## License
The license for this model is based on the original license (found in the LICENSE file in the project's root directory), which is the MIT License.
- https://huggingface.co/BAAI/bge-m3
## Attribution
All credits for this model go to the authors of BAAI/bge-m3 and the associated researchers and organizations. When using this model, please be sure to attribute the original authors.