|
--- |
|
license: mit |
|
base_model: |
|
- openbmb/MiniCPM-Llama3-V-2_5 |
|
--- |
|
|
|
# M-STAR |
|
|
|
<p align="center"> |
|
<img src="./assets/mstar-logo.png" width="300"> |
|
</p> |
|
|
|
<p align="center"> |
|
<a href="https://mstar-lmm.github.io/">Project Page</a> |
|
</p> |
|
|
|
M-STAR is a framework to improve the **Multimodal Reasoning** ability of Large Multimodal Models (LMMs) via **Self-Evolving Training**. |
|
|
|
Unlike traditional **Self-Evolving Training**, M-STAR supports **Large Multimodal Models**, **Training with Multimodal Process Reward Models (MPRM)**, and **Adaptive Explorations during Training**. |
|
|
|
This is M-STAR-MiniCPM-V-2.5 model based on [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5), which has been trained using M-STAR, our self-evolving training framework for multimodal reasoning. |
|
|
|
- **M-STAR Resources**: |
|
|
|
| **Component** |**Description** | |
|
|------------------------------|---------------------------------------------------------------------------------------------------------------------| |
|
| **M-STAR Model** | A strong LMM for multimodal reasoning, scoring **59.5** on MathVista, based on [MiniCPM-V-2.5](https://github.com/OpenBMB/MiniCPM-V) with 8B parameters. | |
|
| **M-STAR PRM** | A Multimodal Process Reward Model (MPRM) that evaluates the quality of multimodal reasoning data at the step level. | |
|
| **M-STAR CoT Dataset** | A collection of 100K generated multimodal reasoning data with CoT, where the queries are sourced from [MathV360K](https://huggingface.co/datasets/Zhiqiang007/MathV360K). | |
|
| **M-STAR MPRM Training Dataset** | A set of 50K multimodal reasoning data designed for training MPRM. | |
|
|
|
|
|
## Performance |
|
|
|
### Main Results |
|
|
|
<div align="center"> |
|
|
|
| | MathVista | FQA | GPS | MWP | TQA | VQA | |
|
|----------------------------|-----------|-------|-------|-------|-------|-------| |
|
| **Baselines** | | | | | | | |
|
| MiniCPM-V-2.5 | 52.4 | 59.2 | 44.7 | 50.5 | 53.8 | 48.0 | |
|
| + warmup | 52.6 | 58.4 | 47.1 | 57.0 | 53.8 | 45.8 | |
|
| SFT | 54.8 | 58.7 | 50.5 | 56.5 | 55.7 | 50.8 | |
|
| ReST<sup>EM</sup> | 55.1 | 59.1 | 49.5 | 65.6 | 55.1 | 48.0 | |
|
| Iterative RFT | 55.7 | 59.1 | 49.5 | 64.5 | 55.1 | 47.5 | |
|
| **Static components only** | | | | | | | |
|
| Cont. Self-Evolving | 57.2 | 57.6 | 56.3 | 65.1 | 57.0 | 49.7 | |
|
| + PRM Re-Rank | 59.2 | 59.1β0.7 | 61.1β14 | 68.3β11.3 | 55.1β1.3 | 51.4β5.6 | |
|
| **Automatically tuning the temperature T** | | | | | | | |
|
| M-STAR (Reward-Pass@2) | 59.5 (+6.9) | 59.5β1.1 | 59.1β12 | 65.6β8.6 | 58.9β5.1 | 54.2β8.4 | |
|
| **Reference** | | | | | | | |
|
| GPT-4o | 63.8 | - | - | - | - | - | |
|
| Gemini 1.5 Flash | 58.4 | - | - | - | - | - | |
|
| GPT-4T 2024-04-09 | 58.1 | - | - | - | - | - | |
|
| Pixtral 12B | 58.0 | - | - | - | - | - | |
|
| InternLM-XComposer2-VL-7B | 57.6 | 55.0 | 63.0 | 73.7 | 56.3 | 39.7 | |
|
| Math-LLaVA-13B | 46.6 | 37.2 | 57.7 | 56.5 | 51.3 | 33.5 | |
|
| LLaVA-NeXT-34B | 46.5 | - | - | - | - | - | |
|
|
|
</div> |
|
|
|
<div align="center"> |
|
|
|
| Model | MathVista | M3CoT | MMStar-R | MMBench-R | AI2D | Average | |
|
|--------------------------|-----------|---------|----------|-----------|--------|----------| |
|
| MiniCPM-V-2.5 | 52.4 | 41.2 | 44.6 | 72.6 | 64.4 | 55.0 | |
|
| + warmup | 52.6 | 47.8 | 45.1 | 76.9 | 65.9 | 57.7 | |
|
| M-STAR | 59.5β6.9 | 48.7β0.9 | 50.7β5.6 | 79.9β3 | 69.1β3.2 | 61.6β3.9 | |
|
| Phi-3.5-vision | 46.5 | 39.4 | 42.5 | 56.8 | 47.5 | 46.5 | |
|
| + warmup | 49.3 | 46.5 | 44.2 | 70.9 | 65.5 | 55.3 | |
|
| M-STAR | 54.5β5.2 | 51.3β4.8 | 48.8β4.6 | 73.6β2.7 | 67.9β2.4 | 59.2β3.9 | |
|
| InternVL2-2B | 46.4 | 16.7 | 20.0 | 14.2 | 33.5 | 26.2 | |
|
| + warmup | 47.6 | 45.6 | 41.8 | 68.8 | 60.0 | 52.8 | |
|
| M-STAR | 50.3β2.7 | 47.1β1.5 | 42.0β0.2 | 67.3β1.5 | 59.7β0.3 | 53.3β0.5 | |
|
|
|
</div> |
|
|
|
### Effectiveness of Adaptively Adjusting Exploration |
|
|
|
<p align="center"> |
|
<img src="./assets/dynamic.png" width="500"> |
|
</p> |
|
|
|
Evaluating the effectiveness of adaptively adjusting exploration: |
|
|
|
- **Reward-Pass@2**: The percentage of samples for which there exist correct responses among the top 2 responses ranked by the reward model. This metric directly reflects the exploitation efficacy of the reward model for the current policy. We choose Pass@2 since our training strategy involves selecting the top 2 responses using the reward model. |
|
|
|
"Static" refers to models trained without adaptive exploration, while "Dynamic" indicates those trained with this mechanism. All models shown were trained using the M-STAR framework with optimized components as explored in our paper. |
|
|
|
## M-STAR Resources |
|
<div align="center"> |
|
|
|
| Resource | Link | License | |
|
|------------------------------------------------|-----------|------------| |
|
| **M-STAR Datasets** |
|
| **M-STAR CoT Dataset** | ... | [MIT License](https://opensource.org/license/mit) |
|
| **M-STAR MPRM Training Dataset** | ... | [MIT License](https://opensource.org/license/mit) |
|
| **M-STAR Models** | | | |
|
| M-STAR-8B-v1.0 | ... | [MiniCPM Model License](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) | |
|
| M-STAR-PRM-8B-v1.0 | ... | [MiniCPM Model License](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) | |
|
</div> |