pelin_5e-05_4_10_categorize
This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6979
- Precision: 0.3237
- Recall: 0.2756
- F1: 0.2977
- Accuracy: 0.8955
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2252 | 1.0 | 675 | 0.2117 | 0.1163 | 0.0490 | 0.0690 | 0.9544 |
0.2166 | 2.0 | 1350 | 0.2461 | 0.1194 | 0.0784 | 0.0947 | 0.9551 |
0.1023 | 3.0 | 2025 | 0.2059 | 0.1419 | 0.2157 | 0.1712 | 0.9451 |
0.0494 | 4.0 | 2700 | 0.2403 | 0.2039 | 0.2059 | 0.2049 | 0.9519 |
0.0382 | 5.0 | 3375 | 0.2802 | 0.2706 | 0.2255 | 0.2460 | 0.9573 |
0.0307 | 6.0 | 4050 | 0.2811 | 0.1966 | 0.2255 | 0.2100 | 0.9558 |
0.0126 | 7.0 | 4725 | 0.2731 | 0.1689 | 0.2451 | 0.2 | 0.9497 |
0.011 | 8.0 | 5400 | 0.3176 | 0.1825 | 0.2255 | 0.2018 | 0.9543 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for hks1444/pelin_5e-05_4_10_categorize
Base model
dbmdz/bert-base-turkish-cased