|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: VRLLab/TurkishBERTweet |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: TurkishBERTweet2_with_categories |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TurkishBERTweet2_with_categories |
|
|
|
This model is a fine-tuned version of [VRLLab/TurkishBERTweet](https://huggingface.co/VRLLab/TurkishBERTweet) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1788 |
|
- Precision: 0.3611 |
|
- Recall: 0.2006 |
|
- F1: 0.2579 |
|
- Accuracy: 0.9585 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.279 | 1.0 | 298 | 0.2864 | 0.0 | 0.0 | 0.0 | 0.9420 | |
|
| 0.2286 | 2.0 | 596 | 0.2713 | 0.25 | 0.0588 | 0.0952 | 0.9472 | |
|
| 0.1702 | 3.0 | 894 | 0.2439 | 0.3130 | 0.1148 | 0.1680 | 0.9517 | |
|
| 0.1181 | 4.0 | 1192 | 0.2775 | 0.2473 | 0.1261 | 0.1670 | 0.9496 | |
|
| 0.0852 | 5.0 | 1490 | 0.3034 | 0.3274 | 0.1541 | 0.2095 | 0.9510 | |
|
| 0.0502 | 6.0 | 1788 | 0.3130 | 0.3605 | 0.2353 | 0.2847 | 0.9532 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|