hkivancoral's picture
End of training
ed15939
|
raw
history blame
4.86 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8966666666666666

smids_5x_deit_tiny_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2922
  • Accuracy: 0.8967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.732 1.0 375 0.7708 0.6633
0.5592 2.0 750 0.5202 0.805
0.438 3.0 1125 0.4358 0.8283
0.4192 4.0 1500 0.3942 0.8367
0.3481 5.0 1875 0.3697 0.855
0.3125 6.0 2250 0.3536 0.855
0.2839 7.0 2625 0.3373 0.8583
0.307 8.0 3000 0.3279 0.865
0.3167 9.0 3375 0.3230 0.8633
0.2868 10.0 3750 0.3137 0.8717
0.2359 11.0 4125 0.3108 0.8717
0.1975 12.0 4500 0.3038 0.8717
0.2176 13.0 4875 0.3032 0.8733
0.2542 14.0 5250 0.3007 0.875
0.2703 15.0 5625 0.2972 0.8683
0.1798 16.0 6000 0.2915 0.885
0.2588 17.0 6375 0.2956 0.89
0.2412 18.0 6750 0.2946 0.8917
0.2128 19.0 7125 0.2865 0.89
0.1689 20.0 7500 0.2885 0.8917
0.1828 21.0 7875 0.2918 0.885
0.1759 22.0 8250 0.2944 0.895
0.2982 23.0 8625 0.2937 0.895
0.1829 24.0 9000 0.2869 0.8917
0.2242 25.0 9375 0.2897 0.8967
0.1828 26.0 9750 0.2915 0.8967
0.2241 27.0 10125 0.2878 0.8933
0.1723 28.0 10500 0.2984 0.8967
0.1963 29.0 10875 0.2878 0.8867
0.1493 30.0 11250 0.2886 0.89
0.2083 31.0 11625 0.2897 0.8983
0.1814 32.0 12000 0.2856 0.8917
0.1849 33.0 12375 0.2930 0.895
0.2425 34.0 12750 0.2930 0.8967
0.156 35.0 13125 0.2856 0.89
0.1222 36.0 13500 0.2860 0.8933
0.1645 37.0 13875 0.2870 0.89
0.1564 38.0 14250 0.2951 0.8967
0.1413 39.0 14625 0.2881 0.8967
0.1794 40.0 15000 0.2908 0.8917
0.1449 41.0 15375 0.2944 0.8983
0.1425 42.0 15750 0.2915 0.8933
0.1565 43.0 16125 0.2889 0.895
0.1698 44.0 16500 0.2893 0.8933
0.1716 45.0 16875 0.2917 0.8983
0.1879 46.0 17250 0.2923 0.895
0.1864 47.0 17625 0.2918 0.8967
0.1231 48.0 18000 0.2914 0.8967
0.1631 49.0 18375 0.2921 0.8967
0.1701 50.0 18750 0.2922 0.8967

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2