hkivancoral's picture
End of training
04425e9
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8818635607321131

smids_3x_deit_small_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0171
  • Accuracy: 0.8819

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4401 1.0 225 0.3048 0.8735
0.2924 2.0 450 0.3208 0.8702
0.2562 3.0 675 0.3212 0.8702
0.2244 4.0 900 0.3324 0.8735
0.2012 5.0 1125 0.4267 0.8602
0.1372 6.0 1350 0.5512 0.8353
0.1267 7.0 1575 0.3624 0.8869
0.0899 8.0 1800 0.5724 0.8436
0.0839 9.0 2025 0.5571 0.8702
0.0466 10.0 2250 0.5349 0.8569
0.0801 11.0 2475 0.5913 0.8502
0.0671 12.0 2700 0.5854 0.8752
0.0348 13.0 2925 0.6837 0.8552
0.0379 14.0 3150 0.5712 0.8752
0.0439 15.0 3375 0.6348 0.8702
0.003 16.0 3600 0.7977 0.8686
0.0261 17.0 3825 0.6729 0.8735
0.002 18.0 4050 0.7795 0.8636
0.001 19.0 4275 0.6782 0.8852
0.0058 20.0 4500 0.6727 0.8918
0.0166 21.0 4725 0.6389 0.8835
0.0009 22.0 4950 0.7419 0.8752
0.0138 23.0 5175 0.7956 0.8769
0.0224 24.0 5400 0.7981 0.8735
0.0076 25.0 5625 0.7548 0.8802
0.0182 26.0 5850 0.8476 0.8586
0.0001 27.0 6075 0.8394 0.8669
0.0 28.0 6300 0.7756 0.8802
0.0001 29.0 6525 0.8666 0.8752
0.0033 30.0 6750 0.8769 0.8935
0.0046 31.0 6975 0.8571 0.8835
0.0 32.0 7200 0.8804 0.8802
0.0022 33.0 7425 0.8723 0.8902
0.0 34.0 7650 0.8812 0.8869
0.0 35.0 7875 0.9182 0.8819
0.0032 36.0 8100 0.9012 0.8869
0.0 37.0 8325 0.9270 0.8885
0.0 38.0 8550 0.8810 0.8902
0.0032 39.0 8775 0.9223 0.8918
0.0 40.0 9000 0.9755 0.8918
0.0003 41.0 9225 0.9917 0.8885
0.0 42.0 9450 0.9880 0.8869
0.0 43.0 9675 0.9953 0.8869
0.0 44.0 9900 0.9968 0.8869
0.0 45.0 10125 1.0016 0.8869
0.0 46.0 10350 1.0040 0.8852
0.0 47.0 10575 1.0063 0.8835
0.0 48.0 10800 1.0129 0.8835
0.0023 49.0 11025 1.0163 0.8819
0.0023 50.0 11250 1.0171 0.8819

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2