hkivancoral's picture
End of training
c7f6a13
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8683333333333333

smids_1x_deit_small_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1062
  • Accuracy: 0.8683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9975 1.0 75 0.8496 0.5467
0.5061 2.0 150 0.5223 0.8067
0.3795 3.0 225 0.4405 0.8267
0.3892 4.0 300 0.3713 0.8533
0.1768 5.0 375 0.3582 0.88
0.1554 6.0 450 0.4330 0.8733
0.1428 7.0 525 0.4207 0.8567
0.0674 8.0 600 0.6040 0.8567
0.0307 9.0 675 0.7767 0.8317
0.0367 10.0 750 0.6480 0.8567
0.0581 11.0 825 0.6494 0.87
0.0608 12.0 900 0.5071 0.8667
0.0462 13.0 975 0.7332 0.855
0.0198 14.0 1050 0.7960 0.8633
0.0291 15.0 1125 0.7675 0.8683
0.0004 16.0 1200 0.8666 0.8567
0.0394 17.0 1275 0.8320 0.8667
0.0137 18.0 1350 0.8206 0.86
0.0055 19.0 1425 0.9665 0.8583
0.029 20.0 1500 0.8497 0.8683
0.0429 21.0 1575 0.9318 0.8717
0.0315 22.0 1650 0.9188 0.8567
0.0182 23.0 1725 0.8073 0.875
0.0239 24.0 1800 0.9607 0.8683
0.0057 25.0 1875 0.8991 0.8767
0.004 26.0 1950 0.8719 0.8633
0.0226 27.0 2025 0.8720 0.8533
0.0534 28.0 2100 0.8637 0.8633
0.0299 29.0 2175 0.9839 0.865
0.0001 30.0 2250 0.9564 0.8667
0.0001 31.0 2325 0.9281 0.8783
0.0024 32.0 2400 0.9454 0.875
0.0023 33.0 2475 0.9716 0.875
0.0055 34.0 2550 0.9822 0.875
0.009 35.0 2625 0.9930 0.865
0.0029 36.0 2700 1.0435 0.8717
0.0019 37.0 2775 1.0502 0.8683
0.0 38.0 2850 1.0112 0.87
0.0 39.0 2925 1.0171 0.8733
0.0 40.0 3000 1.0381 0.8733
0.0 41.0 3075 1.0120 0.8667
0.0026 42.0 3150 1.0208 0.8667
0.0025 43.0 3225 1.0419 0.8683
0.0 44.0 3300 1.0612 0.87
0.0025 45.0 3375 1.0735 0.8633
0.0025 46.0 3450 1.0868 0.8667
0.0049 47.0 3525 1.0931 0.87
0.0 48.0 3600 1.0992 0.8683
0.0 49.0 3675 1.1039 0.87
0.0045 50.0 3750 1.1062 0.8683

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0