hkivancoral's picture
End of training
2b14ec4
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6

hushem_40x_deit_small_rms_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 7.1718
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2965 1.0 215 1.2091 0.4667
0.8177 2.0 430 1.2899 0.5333
0.7013 3.0 645 1.2461 0.5111
0.6618 4.0 860 1.7839 0.4444
0.462 5.0 1075 1.6189 0.4889
0.4201 6.0 1290 2.6718 0.4889
0.3471 7.0 1505 2.6469 0.5556
0.3247 8.0 1720 2.5316 0.5778
0.3947 9.0 1935 2.1794 0.5556
0.3688 10.0 2150 2.4409 0.4889
0.3554 11.0 2365 2.7892 0.5556
0.3048 12.0 2580 3.7146 0.5333
0.3088 13.0 2795 2.9395 0.6
0.2595 14.0 3010 2.6649 0.6222
0.2467 15.0 3225 3.0874 0.5778
0.2539 16.0 3440 3.4419 0.6
0.2637 17.0 3655 3.2496 0.6
0.2157 18.0 3870 3.3961 0.6
0.1038 19.0 4085 4.4011 0.6
0.1844 20.0 4300 3.9340 0.5111
0.1977 21.0 4515 4.0238 0.5556
0.1597 22.0 4730 3.8533 0.5778
0.1177 23.0 4945 4.1555 0.5556
0.0976 24.0 5160 3.8653 0.6222
0.106 25.0 5375 3.5209 0.5778
0.0483 26.0 5590 4.5365 0.6222
0.0977 27.0 5805 3.6449 0.6
0.115 28.0 6020 4.3353 0.6
0.0948 29.0 6235 4.1300 0.6222
0.0615 30.0 6450 4.7232 0.6
0.1033 31.0 6665 4.3508 0.5778
0.0812 32.0 6880 4.5803 0.5778
0.056 33.0 7095 4.4372 0.6222
0.0361 34.0 7310 4.9845 0.6444
0.0141 35.0 7525 6.0367 0.5778
0.0009 36.0 7740 5.8383 0.6222
0.0009 37.0 7955 5.7637 0.6222
0.0203 38.0 8170 5.3901 0.6
0.049 39.0 8385 5.5891 0.5778
0.0029 40.0 8600 5.9302 0.5778
0.0002 41.0 8815 5.9565 0.5778
0.0046 42.0 9030 6.4259 0.5778
0.0003 43.0 9245 6.2149 0.6222
0.0 44.0 9460 6.6058 0.6
0.0 45.0 9675 6.5823 0.6
0.0 46.0 9890 6.7170 0.6
0.0 47.0 10105 6.8829 0.6
0.0 48.0 10320 7.0021 0.6
0.0 49.0 10535 7.1301 0.6
0.0 50.0 10750 7.1718 0.6

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2