hkivancoral's picture
End of training
4818abf
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8604651162790697

hushem_40x_deit_small_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3623
  • Accuracy: 0.8605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.162 1.0 217 0.7397 0.8140
0.0554 2.0 434 0.5902 0.8605
0.0178 3.0 651 1.1734 0.8605
0.0009 4.0 868 1.2319 0.8372
0.0013 5.0 1085 1.7982 0.7442
0.0274 6.0 1302 1.0518 0.8140
0.0022 7.0 1519 1.2789 0.7907
0.0002 8.0 1736 1.6091 0.7907
0.0002 9.0 1953 1.3608 0.7907
0.0001 10.0 2170 1.7662 0.7674
0.0001 11.0 2387 1.4719 0.8372
0.0001 12.0 2604 0.9802 0.8837
0.0537 13.0 2821 1.7727 0.8140
0.0 14.0 3038 1.4355 0.8372
0.0002 15.0 3255 1.2526 0.8140
0.0071 16.0 3472 1.9556 0.7674
0.0 17.0 3689 1.8517 0.7907
0.0016 18.0 3906 1.4335 0.8372
0.0124 19.0 4123 1.3513 0.7907
0.0235 20.0 4340 2.0239 0.7907
0.0 21.0 4557 1.2893 0.8605
0.0 22.0 4774 1.3114 0.8605
0.0 23.0 4991 1.3523 0.8605
0.0 24.0 5208 1.4204 0.8372
0.0 25.0 5425 1.5136 0.8372
0.0 26.0 5642 1.6287 0.8605
0.0 27.0 5859 1.7481 0.8605
0.0 28.0 6076 1.8569 0.8605
0.0 29.0 6293 1.9482 0.8605
0.0 30.0 6510 2.0219 0.8605
0.0 31.0 6727 2.0881 0.8605
0.0 32.0 6944 2.1406 0.8605
0.0 33.0 7161 2.1867 0.8605
0.0 34.0 7378 2.2231 0.8605
0.0 35.0 7595 2.2508 0.8605
0.0 36.0 7812 2.2725 0.8605
0.0 37.0 8029 2.2899 0.8605
0.0 38.0 8246 2.3039 0.8605
0.0 39.0 8463 2.3156 0.8605
0.0 40.0 8680 2.3253 0.8605
0.0 41.0 8897 2.3335 0.8605
0.0 42.0 9114 2.3403 0.8605
0.0 43.0 9331 2.3460 0.8605
0.0 44.0 9548 2.3507 0.8605
0.0 45.0 9765 2.3545 0.8605
0.0 46.0 9982 2.3575 0.8605
0.0 47.0 10199 2.3597 0.8605
0.0 48.0 10416 2.3612 0.8605
0.0 49.0 10633 2.3621 0.8605
0.0 50.0 10850 2.3623 0.8605

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2