Uploaded model

  • Developed by: hiroshij
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

How to finetune llm-jp/llm-jp-3-13b

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from unsloth import FastLanguageModel import torch max_seq_length = 2048 # Original 512 dtype = None load_in_4bit = True

model_id = "hiroshij/llm-jp-3-13b-finetune-joga-20241202" new_model_id = "llm-jp-3-13b-finetune-joga-20241202-2"

model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, )

model = FastLanguageModel.get_peft_model( model, r = 32, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 32, lora_dropout = 0.05, bias = "none", use_gradient_checkpointing = "unsloth", random_state = 3407, use_rslora = False, loftq_config = None, max_seq_length = max_seq_length, )


from tqdm import tqdm

FastLanguageModel.for_inference(model)

results = [] for dt in tqdm(datasets): input = dt["input"]

prompt = f"""### 指示\n{input}\n### 回答\n"""

inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens = 1024, use_cache = True, do_sample=False, repetition_penalty=1.2) #Original 512 prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for hiroshij/llm-jp-3-13b-finetune-joga-20241202-2

Finetuned
(1120)
this model