hasan-mr/t5-small-finetuned-summarization-billsum-v1

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.5716
  • Validation Loss: 2.3842
  • Train Rougel: tf.Tensor(0.13416424, shape=(), dtype=float32)
  • Epoch: 3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Rougel Epoch
3.3695 2.7228 tf.Tensor(0.10740497, shape=(), dtype=float32) 0
2.8189 2.5337 tf.Tensor(0.11091911, shape=(), dtype=float32) 1
2.6657 2.4427 tf.Tensor(0.124923535, shape=(), dtype=float32) 2
2.5716 2.3842 tf.Tensor(0.13416424, shape=(), dtype=float32) 3

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.14.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
47
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for hasan-mr/t5-small-finetuned-summarization-billsum-v1

Base model

google-t5/t5-small
Finetuned
(1718)
this model