Uploaded model

  • Developed by: harithapliyal
  • License: apache-2.0
  • Finetuned from model : unsloth/llama-3-8b-bnb-4bit

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

from google.colab import userdata HF_KEY = userdata.get('HF_KEY')

from unsloth import FastLanguageModel import torch

Load model directly

from transformers import AutoModelForCausalLM, BitsAndBytesConfig

Configure the quantization

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16"
)

Load the model with quantization

model1 = AutoModelForCausalLM.from_pretrained(
    "harithapliyal/llama-3-8b-bnb-4bit-finetuned-SentAnalysis", 
    quantization_config=bnb_config
)



FastLanguageModel.for_inference(model1) # Enable native 2x faster inference
inputs = tokenizer(
[
    fine_tuned_prompt.format(
        "Classify the sentiment of the following text.", # instruction
        "I like play yoga under the rain", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
outputs = tokenizer.decode(outputs[0])
print(outputs)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for harithapliyal/llama-3-8b-bnb-4bit-finetuned-SentAnalysis

Finetuned
(2630)
this model