File size: 4,151 Bytes
ac52ee7
 
 
 
 
 
 
 
 
 
75f6f4f
 
 
 
 
 
ac52ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79adb43
 
 
 
 
 
 
 
 
 
 
 
 
 
e3eba5c
79adb43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
library_name: transformers
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
model-index:
- name: whisper-fa-tinyyy
  results: []
license: mit
language:
- fa
metrics:
- wer
pipeline_tag: automatic-speech-recognition
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-fa-tinyyy

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0246

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0186        | 0.9998 | 2357 | 0.0246          |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1

## how to use the model in colab:
    
    # Install required packages
    !pip install torch torchaudio transformers pydub google-colab
    
    import torch
    from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
    from pydub import AudioSegment
    import os
    from google.colab import files
    
    # Load the model and processor
    model_id = "hackergeek98/whisper-fa-tinyyy"
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
    processor = AutoProcessor.from_pretrained(model_id)
    
    # Create pipeline
    whisper_pipe = pipeline(
        "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1
    )
    
    # Convert audio to WAV format
    def convert_to_wav(audio_path):
        audio = AudioSegment.from_file(audio_path)
        wav_path = "converted_audio.wav"
        audio.export(wav_path, format="wav")
        return wav_path
    
    # Split long audio into chunks
    def split_audio(audio_path, chunk_length_ms=30000):  # Default: 30 sec per chunk
        audio = AudioSegment.from_wav(audio_path)
        chunks = [audio[i:i+chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
        chunk_paths = []
        
        for i, chunk in enumerate(chunks):
            chunk_path = f"chunk_{i}.wav"
            chunk.export(chunk_path, format="wav")
            chunk_paths.append(chunk_path)
        
        return chunk_paths
    
    # Transcribe a long audio file
    def transcribe_long_audio(audio_path):
        wav_path = convert_to_wav(audio_path)
        chunk_paths = split_audio(wav_path)
        transcription = ""
        
        for chunk in chunk_paths:
            result = whisper_pipe(chunk)
            transcription += result["text"] + "\n"
            os.remove(chunk)  # Remove processed chunk
        
        os.remove(wav_path)  # Cleanup original file
        
        # Save transcription to a text file
        text_path = "transcription.txt"
        with open(text_path, "w") as f:
            f.write(transcription)
        
        return text_path
    
    # Upload and process audio in Colab
    uploaded = files.upload()
    audio_file = list(uploaded.keys())[0]
    transcription_file = transcribe_long_audio(audio_file)
    
    # Download the transcription file
    files.download(transcription_file)