Update README.md
Browse files
README.md
CHANGED
@@ -66,4 +66,75 @@ The following hyperparameters were used during training:
|
|
66 |
- Transformers 4.49.0
|
67 |
- Pytorch 2.6.0+cu124
|
68 |
- Datasets 3.4.1
|
69 |
-
- Tokenizers 0.21.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
- Transformers 4.49.0
|
67 |
- Pytorch 2.6.0+cu124
|
68 |
- Datasets 3.4.1
|
69 |
+
- Tokenizers 0.21.1
|
70 |
+
|
71 |
+
## how to use the model in colab:
|
72 |
+
|
73 |
+
# Install required packages
|
74 |
+
!pip install torch torchaudio transformers pydub google-colab
|
75 |
+
|
76 |
+
import torch
|
77 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
78 |
+
from pydub import AudioSegment
|
79 |
+
import os
|
80 |
+
from google.colab import files
|
81 |
+
|
82 |
+
# Load the model and processor
|
83 |
+
model_id = "hackergeek98/tinyyyy_whisper"
|
84 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
85 |
+
|
86 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
|
87 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
88 |
+
|
89 |
+
# Create pipeline
|
90 |
+
whisper_pipe = pipeline(
|
91 |
+
"automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1
|
92 |
+
)
|
93 |
+
|
94 |
+
# Convert audio to WAV format
|
95 |
+
def convert_to_wav(audio_path):
|
96 |
+
audio = AudioSegment.from_file(audio_path)
|
97 |
+
wav_path = "converted_audio.wav"
|
98 |
+
audio.export(wav_path, format="wav")
|
99 |
+
return wav_path
|
100 |
+
|
101 |
+
# Split long audio into chunks
|
102 |
+
def split_audio(audio_path, chunk_length_ms=30000): # Default: 30 sec per chunk
|
103 |
+
audio = AudioSegment.from_wav(audio_path)
|
104 |
+
chunks = [audio[i:i+chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
105 |
+
chunk_paths = []
|
106 |
+
|
107 |
+
for i, chunk in enumerate(chunks):
|
108 |
+
chunk_path = f"chunk_{i}.wav"
|
109 |
+
chunk.export(chunk_path, format="wav")
|
110 |
+
chunk_paths.append(chunk_path)
|
111 |
+
|
112 |
+
return chunk_paths
|
113 |
+
|
114 |
+
# Transcribe a long audio file
|
115 |
+
def transcribe_long_audio(audio_path):
|
116 |
+
wav_path = convert_to_wav(audio_path)
|
117 |
+
chunk_paths = split_audio(wav_path)
|
118 |
+
transcription = ""
|
119 |
+
|
120 |
+
for chunk in chunk_paths:
|
121 |
+
result = whisper_pipe(chunk)
|
122 |
+
transcription += result["text"] + "\n"
|
123 |
+
os.remove(chunk) # Remove processed chunk
|
124 |
+
|
125 |
+
os.remove(wav_path) # Cleanup original file
|
126 |
+
|
127 |
+
# Save transcription to a text file
|
128 |
+
text_path = "transcription.txt"
|
129 |
+
with open(text_path, "w") as f:
|
130 |
+
f.write(transcription)
|
131 |
+
|
132 |
+
return text_path
|
133 |
+
|
134 |
+
# Upload and process audio in Colab
|
135 |
+
uploaded = files.upload()
|
136 |
+
audio_file = list(uploaded.keys())[0]
|
137 |
+
transcription_file = transcribe_long_audio(audio_file)
|
138 |
+
|
139 |
+
# Download the transcription file
|
140 |
+
files.download(transcription_file)
|