Update README.md
Browse files
README.md
CHANGED
|
@@ -66,4 +66,75 @@ The following hyperparameters were used during training:
|
|
| 66 |
- Transformers 4.49.0
|
| 67 |
- Pytorch 2.6.0+cu124
|
| 68 |
- Datasets 3.4.1
|
| 69 |
-
- Tokenizers 0.21.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
- Transformers 4.49.0
|
| 67 |
- Pytorch 2.6.0+cu124
|
| 68 |
- Datasets 3.4.1
|
| 69 |
+
- Tokenizers 0.21.1
|
| 70 |
+
|
| 71 |
+
## how to use the model in colab:
|
| 72 |
+
|
| 73 |
+
# Install required packages
|
| 74 |
+
!pip install torch torchaudio transformers pydub google-colab
|
| 75 |
+
|
| 76 |
+
import torch
|
| 77 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 78 |
+
from pydub import AudioSegment
|
| 79 |
+
import os
|
| 80 |
+
from google.colab import files
|
| 81 |
+
|
| 82 |
+
# Load the model and processor
|
| 83 |
+
model_id = "hackergeek98/tinyyyy_whisper"
|
| 84 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 85 |
+
|
| 86 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
|
| 87 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 88 |
+
|
| 89 |
+
# Create pipeline
|
| 90 |
+
whisper_pipe = pipeline(
|
| 91 |
+
"automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Convert audio to WAV format
|
| 95 |
+
def convert_to_wav(audio_path):
|
| 96 |
+
audio = AudioSegment.from_file(audio_path)
|
| 97 |
+
wav_path = "converted_audio.wav"
|
| 98 |
+
audio.export(wav_path, format="wav")
|
| 99 |
+
return wav_path
|
| 100 |
+
|
| 101 |
+
# Split long audio into chunks
|
| 102 |
+
def split_audio(audio_path, chunk_length_ms=30000): # Default: 30 sec per chunk
|
| 103 |
+
audio = AudioSegment.from_wav(audio_path)
|
| 104 |
+
chunks = [audio[i:i+chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
| 105 |
+
chunk_paths = []
|
| 106 |
+
|
| 107 |
+
for i, chunk in enumerate(chunks):
|
| 108 |
+
chunk_path = f"chunk_{i}.wav"
|
| 109 |
+
chunk.export(chunk_path, format="wav")
|
| 110 |
+
chunk_paths.append(chunk_path)
|
| 111 |
+
|
| 112 |
+
return chunk_paths
|
| 113 |
+
|
| 114 |
+
# Transcribe a long audio file
|
| 115 |
+
def transcribe_long_audio(audio_path):
|
| 116 |
+
wav_path = convert_to_wav(audio_path)
|
| 117 |
+
chunk_paths = split_audio(wav_path)
|
| 118 |
+
transcription = ""
|
| 119 |
+
|
| 120 |
+
for chunk in chunk_paths:
|
| 121 |
+
result = whisper_pipe(chunk)
|
| 122 |
+
transcription += result["text"] + "\n"
|
| 123 |
+
os.remove(chunk) # Remove processed chunk
|
| 124 |
+
|
| 125 |
+
os.remove(wav_path) # Cleanup original file
|
| 126 |
+
|
| 127 |
+
# Save transcription to a text file
|
| 128 |
+
text_path = "transcription.txt"
|
| 129 |
+
with open(text_path, "w") as f:
|
| 130 |
+
f.write(transcription)
|
| 131 |
+
|
| 132 |
+
return text_path
|
| 133 |
+
|
| 134 |
+
# Upload and process audio in Colab
|
| 135 |
+
uploaded = files.upload()
|
| 136 |
+
audio_file = list(uploaded.keys())[0]
|
| 137 |
+
transcription_file = transcribe_long_audio(audio_file)
|
| 138 |
+
|
| 139 |
+
# Download the transcription file
|
| 140 |
+
files.download(transcription_file)
|