tinyyyy_whisper / README.md
hackergeek98's picture
Update README.md
65f57bc verified
|
raw
history blame
1.67 kB
metadata
license: mit
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - fa
metrics:
  - wer
base_model:
  - openai/whisper-tiny
pipeline_tag: automatic-speech-recognition
library_name: transformers

how to use the model in colab:

!pip install torch torchaudio transformers librosa gradio

from transformers import WhisperProcessor, WhisperForConditionalGeneration

import torch

Load your fine-tuned Whisper model and processor

model_name = "hackergeek98/tinyyyy_whisper"

processor = WhisperProcessor.from_pretrained(model_name)

model = WhisperForConditionalGeneration.from_pretrained(model_name)

Force the model to transcribe in Persian

model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe")

Move model to GPU if available

device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) import librosa

def transcribe_audio(audio_file): # Load audio file using librosa (supports multiple formats) audio_data, sampling_rate = librosa.load(audio_file, sr=16000) # Resample to 16kHz

# Preprocess the audio
inputs = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)

# Generate transcription
with torch.no_grad():
    predicted_ids = model.generate(inputs)

# Decode the transcription
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription

from google.colab import files

Upload an audio file

uploaded = files.upload() audio_file = list(uploaded.keys())[0]

Transcribe the audio

transcription = transcribe_audio(audio_file) print("Transcription:", transcription)