tinyyyy_whisper / README.md
hackergeek98's picture
Update README.md
0c24b79 verified
|
raw
history blame
1.91 kB
metadata
license: mit
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - fa
metrics:
  - wer
base_model:
  - openai/whisper-tiny
pipeline_tag: automatic-speech-recognition
library_name: transformers

how to use the model in colab:

 #start
 pip install torch torchaudio transformers librosa gradio
 from transformers import WhisperProcessor, WhisperForConditionalGeneration
 import torch

  #Load your fine-tuned Whisper model and processor
  model_name = "hackergeek98/tinyyyy_whisper"
  processor = WhisperProcessor.from_pretrained(model_name)
  model = WhisperForConditionalGeneration.from_pretrained(model_name)

  #Force the model to transcribe in Persian
  model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe")
  
  #Move model to GPU if available
  device = "cuda" if torch.cuda.is_available() else "cpu"
  model.to(device)
  import librosa
  
  def transcribe_audio(audio_file):
      # Load audio file using librosa (supports multiple formats)
      audio_data, sampling_rate = librosa.load(audio_file, sr=16000)  # Resample to 16kHz
  
      # Preprocess the audio
      inputs = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)
  
      # Generate transcription
      with torch.no_grad():
          predicted_ids = model.generate(inputs)
  
      # Decode the transcription
      transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
      return transcription
  from google.colab import files
  
  #Upload an audio file
  uploaded = files.upload()
  audio_file = list(uploaded.keys())[0]
  
  #Transcribe the audio
  transcription = transcribe_audio(audio_file)
  print("Transcription:", transcription)