Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.004852553257630565
  • mse: 1.704782407585897
  • mae: 1.0301575550030646
  • rmse: 1.3056731626199174
  • rmsle: 0.1919556417083651
  • loss: 1.3056731626199174

Best Params

  • learning_rate: 0.16113054215755473
  • reg_lambda: 3.3566663737449463e-06
  • reg_alpha: 1.999845686956423e-05
  • subsample: 0.3521158025399591
  • colsample_bytree: 0.1661721364825762
  • max_depth: 2
  • early_stopping_rounds: 172
  • n_estimators: 20000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.