gustavokpc/IC_setimo
This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1339
- Train Accuracy: 0.9523
- Train F1 M: 0.5559
- Train Precision M: 0.4041
- Train Recall M: 0.9513
- Validation Loss: 0.2110
- Validation Accuracy: 0.9222
- Validation F1 M: 0.5681
- Validation Precision M: 0.4137
- Validation Recall M: 0.9574
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2274, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Train F1 M | Train Precision M | Train Recall M | Validation Loss | Validation Accuracy | Validation F1 M | Validation Precision M | Validation Recall M | Epoch |
---|---|---|---|---|---|---|---|---|---|---|
0.4176 | 0.8080 | 0.4543 | 0.3667 | 0.6857 | 0.2600 | 0.8991 | 0.5567 | 0.4108 | 0.9084 | 0 |
0.2122 | 0.9203 | 0.5400 | 0.3991 | 0.8908 | 0.2049 | 0.9215 | 0.5529 | 0.4068 | 0.9089 | 1 |
0.1339 | 0.9523 | 0.5559 | 0.4041 | 0.9513 | 0.2110 | 0.9222 | 0.5681 | 0.4137 | 0.9574 | 2 |
Framework versions
- Transformers 4.34.1
- TensorFlow 2.10.0
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for gustavokpc/IC_setimo
Base model
google-bert/bert-large-uncased