gustavokpc/IC_setimo

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1339
  • Train Accuracy: 0.9523
  • Train F1 M: 0.5559
  • Train Precision M: 0.4041
  • Train Recall M: 0.9513
  • Validation Loss: 0.2110
  • Validation Accuracy: 0.9222
  • Validation F1 M: 0.5681
  • Validation Precision M: 0.4137
  • Validation Recall M: 0.9574
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2274, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train F1 M Train Precision M Train Recall M Validation Loss Validation Accuracy Validation F1 M Validation Precision M Validation Recall M Epoch
0.4176 0.8080 0.4543 0.3667 0.6857 0.2600 0.8991 0.5567 0.4108 0.9084 0
0.2122 0.9203 0.5400 0.3991 0.8908 0.2049 0.9215 0.5529 0.4068 0.9089 1
0.1339 0.9523 0.5559 0.4041 0.9513 0.2110 0.9222 0.5681 0.4137 0.9574 2

Framework versions

  • Transformers 4.34.1
  • TensorFlow 2.10.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for gustavokpc/IC_setimo

Finetuned
(125)
this model